Abstract:
The present invention provides an exhaust gas purifier capable of appropriately purifying harmful components discharged even from an internal combustion engine or a combustion instrument operated mainly in excess-air conditions. Particularly, the exhaust gas purifier is capable of appropriately removing nitrogen oxides, particulate matters including soot, etc. and in addition, capable of maintaining its purification capability without reduction. the exhaust gas purifier has, in the exhaust passage (2) of an internal combustion engine (1), a nitrogen oxide adsorbent (4) for temporarily adsorbing nitrogen oxides and desorbing the adsorbed nitrogen oxides in a temperature-increased environment or a reducing environment, an adsorbed substance desorbing means (3) being disposed on an exhaust gas upstream side of the nitrogen oxide adsorbent (4), the adsorbed substance desorbing means (3) heating the exhaust gas or air or converting the exhaust gas or air into a reducing atmosphere, a combustion apparatus (5) being disposed on an exhaust gas downstream side of the nitrogen oxide adsorbent (4), the combustion apparatus (4) including air supply means (15), fuel supply means (6), and ignition means (7); and a filter apparatus (40) being disposed on an exhaust gas downstream side of the combustion apparatus (5) to be able to capture a particulate substance contained in the exhaust gas.
Abstract:
The present invention provides an exhaust gas purifier capable of appropriately purifying harmful components discharged even from an internal combustion engine or a combustion instrument operated mainly in excess-air conditions. Particularly, the exhaust gas purifier is capable of appropriately removing nitrogen oxides, particulate matters including soot, etc. and in addition, capable of maintaining its purification capability without reduction. the exhaust gas purifier has, in the exhaust passage (2) of an internal combustion engine (1), a nitrogen oxide adsorbent (4) for temporarily adsorbing nitrogen oxides and desorbing the adsorbed nitrogen oxides in a temperature-increased environment or a reducing environment, an adsorbed substance desorbing means (3) being disposed on an exhaust gas upstream side of the nitrogen oxide adsorbent (4), the adsorbed substance desorbing means (3) heating the exhaust gas or air or converting the exhaust gas or air into a reducing atmosphere, a combustion apparatus (5) being disposed on an exhaust gas downstream side of the nitrogen oxide adsorbent (4), the combustion apparatus (4) including air supply means (15), fuel supply means (6), and ignition means (7); and a filter apparatus (40) being disposed on an exhaust gas downstream side of the combustion apparatus (5) to be able to capture a particulate substance contained in the exhaust gas.
Abstract:
Disclosed is a method for controlling an exhaust gas purification device, wherein the regeneration operation includes main regeneration operation for detaching the nitrogen oxides adsorbed onto the nitrogen oxide adsorbing material, the method comprising: operating the first combustion device and the second combustion device while the exhaust gas is prevented from flowing into the branch exhaust passage subjected to the regeneration operation by the switching of a changeover valve during the regeneration operation; and decreasing the flow rate of the first mixture gas as the stage of the main regeneration operation advances.
Abstract:
An exhaust gas purification device 1 is equipped with a plurality of branch exhaust passages 2 and 3; a junction exhaust passage 110; a shutoff valve 4 switching between allowing and shutting off the flow of exhaust gas to the respective branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5 temporarily adsorbing nitrogen oxides in an excess air atmosphere and detaching the adsorbed nitrogen oxides in a reducing atmosphere and reducing the nitrogen oxides in the reducing atmosphere to produce ammonia; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 and having an air supply unit, changing the air supplied from the air supply unit into the reducing atmosphere; and a selective reduction catalyst 19, provided inside the junction exhaust passage 110, selectively reducing the nitrogen oxides by using ammonia as a reducing agent.
Abstract:
A method for controlling an exhaust gas purification device 1 equipped with branch exhaust passages 2 and 3 connected to an exhaust passage 100 on the engine side; a shutoff valve 4 capable of shutting off exhaust gas at the exhaust inlets 2a and 3a of the branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5, disposed inside each of the branch exhaust passages 2 or 3, temporarily adsorbing nitrogen oxides in an excess air atmosphere, and detaching the adsorbed nitrogen oxides in a rising temperature atmosphere or a reducing atmosphere; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 inside each of the branch exhaust passages 2 or 3, having an air nozzle 61, and changing the air supplied from the air nozzle 61 into the rising temperature atmosphere or the reducing atmosphere; and a second combustion device 7, disposed on the exhaust downstream side of the nitrogen oxide adsorbing material 5 inside each of the branch exhaust passages 2 or 3 and including an air nozzle 71, a fuel nozzle 72 and an ignition nozzle 73, wherein the ratio of fuel and air supplied from the first combustion device 6 is controlled within the range of 0.6
Abstract:
It is intended to efficiently remove particulate substances, such as NOx and soot, without poisoning by Sox, etc. from dilute-combustion effecting internal combustion engines, combustion equipment, etc. There is provided an exhaust gas purifier to be installed in exhaust passage (2) of internal combustion engine (1) or the like, comprising, disposed in the exhaust passage (2), NOx adsorbent (4) capable of temporarily adsorbing nitrogen oxides even in an atmosphere of excess air and capable of desorbing the adsorbed nitrogen oxides upon temperature rise or in a reducing atmosphere, adsorbed substance desorbing means (3) arranged on an exhaust upstream side as compared with the NOx adsorbent (4) and capable of heating the exhaust or converting it to a reducing atmosphere, and combustion device (5) arranged on an exhaust downstream side as compared with the NOx adsorbent (4) and composed of fuel nozzle (6) and igniter (7). In normal operation, the NOx adsorbent (4) adsorbs NOx contained in exhaust gas. When the amount of NOx adsorbed increases to saturation, the adsorbed substance desorbing means (3) and the combustion device (5) are operated to thereby desorb the NOx, which is burned off in combustion over-rich combustion region (X1) of the combustion device (5).
Abstract:
An apparatus 100 for cleaning a filter for removing particulate matter comprises: a filter 3 installed in a exhaust passage 2 of an internal combustion engine 1 and capturing the particulate matter 19 included in the exhaust gas; an injector 4 being able to inject high-pressure air and high-pressure vapor to the filter 3 in a opposite direction to a flow direction of the exhaust gas; a high-pressure air feeder 5 being able to feed the high-pressure air to the injector 4; and a high-pressure vapor feeder 6 being able to feed the high-pressure vapor to the injector 4.
Abstract:
An exhaust gas purification device 1 is equipped with a plurality of branch exhaust passages 2 and 3; a junction exhaust passage 110; a shutoff valve 4 switching between allowing and shutting off the flow of exhaust gas to the respective branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5 temporarily adsorbing nitrogen oxides in an excess air atmosphere and detaching the adsorbed nitrogen oxides in a reducing atmosphere and reducing the nitrogen oxides in the reducing atmosphere to produce ammonia; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 and having an air supply unit, changing the air supplied from the air supply unit into the reducing atmosphere; and a selective reduction catalyst 19, provided inside the junction exhaust passage 110, selectively reducing the nitrogen oxides by using ammonia as a reducing agent.
Abstract:
An exhaust gas purification device (1) comprising a main exhaust passage (2) and a branch exhaust passage (3) connected to an exhaust passage (100) on the engine side; shutoff valves (4A) and (4B) capable of shutting off exhaust gas at the exhaust inlets (2a) and (3a) of the main exhaust passage (2) and the branch exhaust passage (3); a nitrogen oxide adsorbing material (5); an adsorbed material detachment unit (6), having an air nozzle (61); and a combustion device (7) including an air nozzle (71), a fuel nozzle (72) and an ignition plug (73), wherein the exhaust gas from the exhaust passage (100) on the engine side is discharged directly from the exhaust outlet (3b) of the branch exhaust passage (3).
Abstract:
Disclosed is a method for controlling an exhaust gas purification device, wherein the regeneration operation includes main regeneration operation for detaching the nitrogen oxides adsorbed onto the nitrogen oxide adsorbing material, the method comprising: operating the first combustion device and the second combustion device while the exhaust gas is prevented from flowing into the branch exhaust passage subjected to the regeneration operation by the switching of a changeover valve during the regeneration operation; and decreasing the flow rate of the first mixture gas as the stage of the main regeneration operation advances.