摘要:
Disclosed is a component for solid oxide fuel cells that is excellent in both electrical conductivity and chromium poisoning resistance. As a substrate, a ferritic stainless steel having a chemical composition containing, in mass %, Cr: 14.0% to 32.0% and Al: 2.50% to 7.00% is used. Precious metal particles are coated on a surface of the substrate. The precious metal particles have: an average particle size of 1 μm or more and 10 μm or less; a coating thickness of 0.5 μm or more and 10 μm or less; and a surface coverage of 1.0% or more.
摘要:
Methods for coating a metal substrate or a metal alloy with electrically conductive titania-based material. The methods produce metal components for electrochemical devices that need high electrical conductance, corrosion resistance and electrode reaction activities for long term operation at a low cost.
摘要:
Method for forming a metallic component surface to achieve lower electrical contact resistance. The method comprises modifying a surface chemical composition and creating a micro-textured surface structure of the metallic component that includes small peaks and/or pits. The small peaks and pits have a round or irregular cross-sectional shape with a diameter between 10 nm and 10 microns, a height/depth between 10 nm and 10 microns, and a distribution density between 0.4 million/cm2 and 5 billion cm2.
摘要:
Method for forming a metallic component surface to achieve lower electrical contact resistance. The method comprises modifying a surface chemical composition and creating a micro-textured surface structure of the metallic component that includes small peaks and/or pits. The small peaks and pits have a round or irregular cross-sectional shape with a diameter between 10 nm and 10 microns, a height/depth between 10 nm and 10 microns, and a distribution density between 0.4 million/cm2 and 5 billion cm2.
摘要:
Methods for coating a metal substrate with electrically conductive dots or splats of active materials for use in battery applications that improve the corrosion resistant metallic component electrode activity, or electrical conductivity of those components at reduced or lower costs.