摘要:
The present disclosure relates to an exhaust gas control catalyst including a base and a catalyst coating layer having a two-layer structure on the base. The catalyst coating layer includes a lower layer on the base, and an upper layer on the lower layer. The upper layer of the catalyst coating layer contains Rh particles in which a mean particle diameter measured by observation using a transmission electron microscope is 1.0 nm or more and 2.0 nm or less and a particle-diameter standard deviation σ is 0.8 nm or less. A length of the upper layer from an end face on a downstream side in an exhaust gas flow direction falls within a range of 70% or more and 100% or less of a total length of the base.
摘要:
An oxygen storage material comprises a Ce—Zr-Ln-Ti-based composite oxide containing cerium (Ce), zirconium (Zr), a rear-earth element (Ln: excluding cerium), and titanium (Ti), wherein at least part of the rear-earth element and at least part of the titanium are solid-dissolved in a composite oxide of the cerium and the zirconium, and the Ce—Zr-Ln-Ti-based composite oxide has a composition expressed by the following chemical formula (1): Cea-xLnxZrb-yTiyOδ (1), where a, b, x, and y are numbers satisfying conditions of a=0.4 to 0.6, b=0.4 to 0.6, x=0 to a (exclusive of x=0 and x=a), y=0 to 0.3 (exclusive of y=0), and a+b=1, and δ is a number of 1.7 to 2.2.
摘要:
An oxygen storage material comprises three pyrochlore-type composite oxides which are a ceria-zirconia composite oxide, a lanthana-zirconia composite oxide, and a ceria-zirconia-lanthana composite oxide, and which coexist together, wherein the oxygen storage material contains: first secondary particles made of the pyrochlore-type ceria-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide; and second secondary particles made of the pyrochlore-type lanthana-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide.
摘要:
A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation σ less than or equal to 0.8 nm.
摘要:
The object of the present invention is to provide a high-performance exhaust gas purifying catalyst that can achieve oxygen absorption/release capacity and NOx purification performance. The object is solved by an exhaust gas purifying catalyst, which comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure in the upstream part of the catalyst coating layer, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % of the total cation amount, and has a molar ratio of (cerium+the additional element):(zirconium) of 43:57 to 48:52.
摘要:
An exhaust gas purification catalyst having a base and a catalytic coating layer formed thereon includes an alumina support, a platinum-group metal, an iron oxide-zirconia-based composite oxide, and a lanthanoid oxide in the same catalytic coating layer.
摘要:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.
摘要:
A core-shell support, comprising: a core which comprises at least one oxygen storage/release material selected from the group consisting of ceria-zirconia based solid solutions and alumina-doped ceria-zirconia based solid solutions; and a shell which comprises a rare earth-zirconia based composite oxide represented by a composition formula: (Re1-xCex)2Zr2O7+x (where Re represents a rare earth element, and x represents a number of 0.0 to 0.8) and with which an outside of the core is coated, the rare earth-zirconia based composite oxide comprising crystal particles having a pyrochlore structure, and the rare earth-zirconia based composite oxide having an average crystallite diameter of 3 to 9 nm.
摘要:
A ceria-zirconia composite oxide includes at least one of lanthanum, yttrium, and praseodymium. A rate of a total content of the at least one rare earth element to a total content of cerium and zirconium is 0.1 at % to 4.0 at %. A content of the rare earth element present in near-surface regions, which are at a distance of less than 50 nm from surfaces of primary particles of the ceria-zirconia composite oxide, accounts for 90 at % or more of the total content of the rare earth element. An average particle size of the primary particles of the ceria-zirconia composite oxide is 2.2 μm to 4.5 μm. After a predetermined durability test, the intensity ratio I(14/29) of a diffraction line at 2θ=14.5° to a diffraction line at 2θ=29° and the intensity ratio I(28/29) of a diffraction line at 2θ=28.5° to the diffraction line at 2θ=29° respectively satisfy the following conditions: I(14/29)≧0.02, and I(28/29)≦0.08.
摘要:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.