Abstract:
The present disclosure relates to an exhaust gas control catalyst including a base and a catalyst coating layer having a two-layer structure on the base. The catalyst coating layer includes a lower layer on the base, and an upper layer on the lower layer. The upper layer of the catalyst coating layer contains Rh particles in which a mean particle diameter measured by observation using a transmission electron microscope is 1.0 nm or more and 2.0 nm or less and a particle-diameter standard deviation σ is 0.8 nm or less. A length of the upper layer from an end face on a downstream side in an exhaust gas flow direction falls within a range of 70% or more and 100% or less of a total length of the base.
Abstract:
A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation σ less than or equal to 0.8 nm.
Abstract:
The object of the present invention is to provide a high-performance exhaust gas purifying catalyst that can achieve oxygen absorption/release capacity and NOx purification performance. The object is solved by an exhaust gas purifying catalyst, which comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure in the upstream part of the catalyst coating layer, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % of the total cation amount, and has a molar ratio of (cerium+the additional element):(zirconium) of 43:57 to 48:52.
Abstract:
A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation σ less than or equal to 0.8 nm.
Abstract:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.
Abstract:
A ceria-zirconia composite oxide includes at least one of lanthanum, yttrium, and praseodymium. A rate of a total content of the at least one rare earth element to a total content of cerium and zirconium is 0.1 at % to 4.0 at %. A content of the rare earth element present in near-surface regions, which are at a distance of less than 50 nm from surfaces of primary particles of the ceria-zirconia composite oxide, accounts for 90 at % or more of the total content of the rare earth element. An average particle size of the primary particles of the ceria-zirconia composite oxide is 2.2 μm to 4.5 μm. After a predetermined durability test, the intensity ratio I(14/29) of a diffraction line at 2θ=14.5° to a diffraction line at 2θ=29° and the intensity ratio I(28/29) of a diffraction line at 2θ=28.5° to the diffraction line at 2θ=29° respectively satisfy the following conditions: I(14/29)≧0.02, and I(28/29)≦0.08.
Abstract:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.
Abstract:
A ceria-zirconia-based composite oxide including a composite oxide containing ceria and zirconia, wherein the ceria-zirconia-based composite oxide contains at least one member selected from the group consisting of praseodymium, lanthanum, and yttrium in an amount of 0.5 to 5.0 mol % relative to a total amount of the cations contained in the ceria-zirconia-based composite oxide, where the ratio of the content of both cerium and the at least one member selected from the group consisting of praseodymium, lanthanum, and yttrium in the ceria-zirconia-based composite oxide to the content of zirconium therein ([cerium and the at least one member selected from the group consisting of praseodymium, lanthanum, and yttrium]:[zirconium]) is in the range of 43:57 to 48:52 by mole ratio.
Abstract:
A catalyst for purification of exhaust gas, wherein a substrate and a catalyst coat layer which is formed on a surface of the substrate and which comprises catalyst particles, wherein the catalyst coat layer has an average thickness in a range of 25 to 160 μm, and a void fraction in a range of 50 to 80% by volume as measured by a weight-in-water method, 0.5 to 50% by volume of all voids in the catalyst coat layer consist of high-aspect ratio pores which have equivalent circle diameters in a range of 2 to 50 μm in a cross-sectional image of a cross-section of the catalyst coat layer which the cross-section is perpendicular to a flow direction of exhaust gas in the substrate, and which have aspect ratios of 5 or higher, and the high-aspect ratio pores have an average aspect ratio in a range of 10 to 50.
Abstract:
When sizes of particles supporting a catalyst metal remain relatively large but sizes of particles not supporting a catalyst metal are minimized among metal oxide particles included in a catalyst coating layer, it is possible to decrease a thickness of the catalyst coating layer while maintaining durability and improve gas diffusibility of the coating layer. Therefore, a thickness of the catalyst coating is decreased without decreasing durability and a catalyst can exhibit high exhaust gas purification performance even under high load conditions.