Abstract:
A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N− well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N− well, a P+ diffusion region in contact with the N− well, and shallow trench isolation structures between the N+ and P+ diffusion regions.
Abstract:
A method for designing a semiconductor device circuit comprising a electrostatic discharge (ESD) protection circuit can include device simulations using at least one, for example two or more ESD models, and designing device features such that they are resilient to damage from the two or more ESD testing models.
Abstract:
Electrostatic discharge (ESD) structures having a connection to a through wafer via structure and methods of manufacture are provided. The structure includes an electrostatic discharge (ESD) network electrically connected in series to a through wafer via. More specifically, the ESD circuit includes a bond pad and an ESD network located under the bond pad. The ESD circuit further includes a through wafer via structure electrically connected in series directly to the ESD network, and which is also electrically connected to VSS.
Abstract:
Method of making an electronic fuse blow resistor structure. In one embodiment, the method includes forming an insulator film, depositing a conductor on the insulator film, and after the depositing, etching the conductor to form a plurality of spaced apart non-conductive regions and a plurality of spaced-apart conductive regions. In another embodiment, the method includes forming the insulator film, forming a conductive sheet, and sub-dividing the conductive sheet into the plurality of conductive regions.
Abstract:
A method and semiconductor structure to avoid latch-up is disclosed. The method includes identifying at least one high voltage device on a semiconductor chip, identifying a circuit on the semiconductor chip separated from the identified at least one high voltage device by a guard ring, evaluating the circuit for a latch-up condition, and when the latch-up condition occurs, adjusting the contact-circuit spacing in the circuit.
Abstract:
A structure for preventing latchup. The structure includes a latchup sensitive structure and a through wafer via structure bounding the latch-up sensitive structure to prevent parasitic carriers from being injected into the latch-up sensitive structure.
Abstract:
Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
Abstract:
A method of manufacturing a semiconductor structure includes: forming a trench in a back side of a substrate; depositing a dopant on surfaces of the trench; forming a shallow trench isolation (STI) structure in a top side of the substrate opposite the trench; forming a deep well in the substrate; out-diffusing the dopant into the deep well and the substrate; forming an N-well and a P-well in the substrate; and filling the trench with a conductive material.
Abstract:
The present invention generally relates to a circuit structure and a method of manufacturing a circuit, and more specifically to an electrostatic discharge (ESD) circuit with a through wafer via structure and a method of manufacture. An ESD structure includes an ESD active device and at least one through wafer via structure providing a low series resistance path for the ESD active device to a substrate. An apparatus includes an input, at least one power rail and an ESD circuit electrically connected between the input and the at least one power rail, wherein the ESD circuit comprises at least one through wafer via structure providing a low series resistance path to a substrate. A method, includes forming an ESD active device on a substrate, forming a ground plane on a backside of the substrate and forming at least one through wafer via electrically connected to a negative power supply of the ESD active device and the ground plane to provide a low series resistance path to the substrate.
Abstract:
A structure, apparatus and method for circuits to minimize sensitivity to latch. The method includes, for example, identifying element density of at least one functional circuit block and element attributes of elements associated with the at least one functional circuit block. An element density function parameterized from the element attributes is formed. The placement of the at least one functional circuit block is modified relative to other functional circuit blocks based on the element density function to substantially eliminate latching effects in a circuit.