Abstract:
In an aspect, the present disclosure provides a method for the oxidative coupling of methane to generate hydrocarbon compounds containing at least two carbon atoms (C2+ compounds). The method can include mixing a first gas stream comprising methane with a second gas stream comprising oxygen to form a third gas stream comprising methane and oxygen and performing an oxidative coupling of methane (OCM) reaction using the third gas stream to produce a product stream comprising one or more C2+ compounds.
Abstract:
Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
Abstract:
Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
Abstract:
The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.
Abstract:
Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
Abstract:
Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
Abstract:
The present disclosure provides oxidative coupling of methane (OCM) systems for small scale and world scale production of olefins. An OCM system may comprise an OCM subsystem that generates a product stream comprising C2+ compounds and non-C2+ impurities from methane and an oxidizing agent. At least one separations subsystem downstream of, and fluidically coupled to, the OCM subsystem can be used to separate the non-C2+ impurities from the C2+ compounds. A methanation subsystem downstream and fluidically coupled to the OCM subsystem can be used to react H2 with CO and/or CO2 in the non-C2+ impurities to generate methane, which can be recycled to the OCM subsystem. The OCM system can be integrated in a non-OCM system, such as a natural gas liquids system or an existing ethylene cracker.