Abstract:
Suspension polymerization of acrolein type compounds in the presence of appropriate surfactants results in the formation of microspheres in size ranging from 0.03 to 80 microns. Fluorescent and magnetic microspheres are obtained by carrying out the same polymerization in the presence of appropriate fluorochromic or ferrofluidic compounds, respectively. Hybrido-polyacrolein microspheres are obtained by grafting one type of such microspheres on another type. Immunomicrospheres were formed by binding covalently at physiological pH appropriate proteins to the microspheres. The immunomicrospheres can be used for various biological applications, such as specific markers for labeling cell surface receptors, for cell separation, for diagnostic purposes, etc.
Abstract:
Suspension polymerization of acrolein type compounds in the presence of appropriate surfactants results in the formation of microspheres in size ranging from 0.03.mu. to 80.mu.. Fluorescent and magnetic microspheres are obtained by carrying out the same polymerization in the presence of appropriate fluorochromic or ferrofluidic compounds, respectively. Hybrido polyacrolein microspheres are obtained by grafting one type of such microspheres on another type. Immunomicrospheres were formed by binding covalently at physiological pH appropriate proteins to the microspheres. The immunomicrospheres can be used for various biological applications, such as specific markers for labelling cell surface receptors, for cell separation, for diagnostic purposes, etc.
Abstract:
Thrombin-conjugated nanoparticles, wherein said nanoparticles comprise one or more organic and/or inorganic compounds and process for preparing the same are provided. The thrombin-conjugated nanoparticles are suitable for use in the preparation of fibrin-based biological sealant.
Abstract:
The invention provides nanoparticles consisting of a polymer which is a metal chelating agent coated with a magnetic metal oxide, wherein at least one active agent is covalently bound to the polymer, said nanoparticles may optionally further comprise at least one active agent physically or covalently bound to the outer surface of the magnetic metal oxide. Pharmaceutical compositions comprising these nanoparticles may be used, inter alia, for detection and treatment of tumors and inflammations.
Abstract:
The present invention discloses Near Infrared (NIR) fluorescent albumin nanoparticles having a structure selected from a core structure or a core-shell structure. Also disclosed are a process of preparing these NIR fluorescent albumin nanoparticles, and a method of in vivo detection of pathologies, in particular cancer pathology, by using administering these NIR fluorescent albumin nanoparticles to a patient.
Abstract:
The present invention relates to embolization material for therapeutic use, wherein said material is visible via more than one imaging technique.
Abstract:
The invention provides nanoparticles consisting of a polymer which is a metal chelating agent coated with a magnetic metal oxide, wherein at least one active agent is covalently bound to the polymer, said nanoparticles may optionally further comprise at least one active agent physically or covalently bound to the outer surface of the magnetic metal oxide. Pharmaceutical compositions comprising these nanoparticles may be used, inter alia, for detection and treatment of tumors and inflammations.
Abstract:
The invention provides nanoparticles consisting of a polymer which is a metal chelating agent coated with a magnetic metal oxide, wherein at least one active agent is covalently bound to the polymer, said nanoparticles may optionally further comprise at least one active agent physically or covalently bound to the outer surface of the magnetic metal oxide. Pharmaceutical compositions comprising these nanoparticles may be used, inter alia, for detection and treatment of tumors and inflammations.
Abstract:
Homopolymeric polyaldehyde microspheres can be prepared in yields of up to about 90% by preparing an aqueous solution consisting essentially of a suitable concentration of an .alpha.,.beta.-ethylenically unsaturated aldehyde and a suitable concentration of an appropriate surfactant under suitable conditions such that the surfactant has a net electrostatic charge. The solution, which may also contain a ferrofluidic material, fluorescent dye or additional solvent, is then irradiated under an inert atmosphere with a sufficient dose of .gamma.-radiation to effect polymerization and the monodisperse homopolymeric polyaldehyde microspheres so produced are recovered. Copolymeric polyaldehyde microspheres can be prepared by adding to the solution a suitable concentration of a copolymerizable comonomer before initiating polymerization.Monodisperse homopolymeric or copolymeric polyaldehyde microspheres useful for affinity chromatography, cell labeling, cell separation and diagnostic purposes can thus be prepared in significantly higher yield than was previously obtainable.
Abstract:
A metal-containing polyaldehyde microsphere composed of a polyaldehyde microsphere to which a transition metal, e.g. Au, Ag, Pt, Pd, Tc, Fe, Ni or Co, is bound may be obtained in accordance with this invention. The polyaldehyde, e.g. polyacrolein or polyglutaraldehyde, may be encapsulated in agarose, and the microsphere may be radioactive or magnetic. The microphere may additionally have a compound having at least one amine group, e.g. a drug, antibody, antigen, enzyme or other protein, bound to its surface.In one embodiment a transition metal is bound to a polyaldehyde microsphere by contacting the polyaldehyde microsphere with a suitable amount of an appropriate salt or acid of the transition metal under suitable conditions so as to cause the salt or acid to be reduced to a lower valence state and to bind to the microsphere. Some salts or acids may thus be reduced to the elemental state; others are further reduced with an appropriate reducing agent.In another embodiment, a transition metal in elemental form is bound to a polyaldehyde microsphere by contacting the polyaldehyde microsphere with a suitable amount of a compound capable of complexing with a salt or acid of the transition metal under suitable conditions permitting binding of the compound to the microsphere, contacting the compound with an appropriate amount of an appropriate salt or acid of a transition metal under appropriate conditions permitting the compound to bind to the salt or acid, and reducing the salt or acid to the corresponding elemental metal by contacting it under effective reducing conditions and for a sufficient period of time with a sufficient amount of an effective reducing agent.The metal-containing microsphere of this invention is useful for such applications as cell labeling, cell separation, diagnostic methods, catalysis and coating methods.