Abstract:
A circuit board structure with embedded electronic components includes: a carrier board having an adhesive layer with two surfaces formed with first and second metal oxide layers covered by first and second metal layers and having at least one through hole; at least one semiconductor chip received in the through hole of the carrier board; an adhesive material filling a gap between the through hole and the semiconductor chip so as to secure the semiconductor chip in position to the through hole; a high dielectric material layer formed outwardly on the second metal layer; and at least one electrode board formed outwardly on the high dielectric material layer such that a capacitance component is formed with the second metal layer, high dielectric material layer, and electrode board. Accordingly, the capacitance component is integrated into the circuit board structure.
Abstract:
A package substrate embedded with a semiconductor component is provided. A semiconductor chip is received in a cavity of a substrate body, and has electrode pads on an active surface thereof. A passivation layer is disposed on the active surface and has openings for exposing the electrode pads. An electroless plating metal layer, a first sputtering metal layer and a second sputtering metal layer are sequentially formed on the electrode pads, the openings of the passivation layer and the passivation layer surface around the openings. Contact pads are formed on the second sputtering metal layer. A first dielectric layer is disposed on the substrate body and the passivation layer. A first circuit layer is formed on the first dielectric layer. First conductive vias are formed in the first dielectric layer and electrically connected to the contact pads. The first circuit layer is electrically connected to the first conductive vias.
Abstract:
A package structure having a semiconductor chip embedded therein and a method of fabricating the same are disclosed. The package structure comprises: an aluminum oxide composite plate and a semiconductor chip. The aluminum oxide composite plate is formed by a stack consisting of an adhesive layer placed in between two aluminum oxide layers. The semiconductor chip having an active surface a plurality of electrode pads disposed thereon can be embedded and secured in the aluminum oxide composite plate. The present invention also comprises a method of fabricating the above-mentioned package structure. The present invention provides an excellent package structure, which can decrease the thickness of the package structure and make the package structure having characteristics of high rigidity and enduring tenacity at the same time.
Abstract:
A package structure with circuit directly connected to semiconductor chip, which comprises: a carrier board, a semiconductor chip, and at least a built-up structure. The carrier board is formed with a through cavity therein. The semiconductor chip is mounted in the through cavity of the carrier board, and a lateral surface of the semiconductor chip is coated by an adhesive material which is not contacted by the carrier board. The built-up structure, which includes a dielectric layer, is disposed on the surface of the carrier board and an active surface of the semiconductor chip. Part surface of the dielectric layer is exposed by the through cavity. The present invention decreases warpage of the packaging structure resulting from asymmetrical built-up structures.
Abstract:
A packaging substrate having a chip embedded therein, comprises a first aluminum substrate having a first cavity therein; a second aluminum substrate having a second cavity corresponding to the first cavity; a dielectric layer disposed between the first aluminum substrate and the second aluminum substrate; a chip embedded in the first cavity and the second cavity, having an active surface with a plurality of electrode pads thereon; and one built-up structure disposed on the surface of the first aluminum substrate and the active surface of the chip, wherein the built-up structure has a plurality of conductive vias electrically connecting to the electrode pads. The substrate warpage is obviously reduced by the assistance of using aluminum or aluminum alloy as the material of the substrate. Also, a method of manufacturing a packaging substrate having a chip embedded therein is disclosed.
Abstract:
A carrier plate structure having a chip embedded therein, comprises an aluminum plate having plural through-holes extending from the upper surface to the lower surface of the aluminum plate, a cavity therein, and an aluminum oxide layer formed on the surface of the aluminum plate; a chip embedded in the cavity with an active surface having plural electrode pads set thereon; and at least one build-up structure mounted on the surface of the aluminum plate and the active surface of the chip, wherein the build-up structure comprises at least one conductive structure to electrically connecting to the electrode pad. Besides, a method of manufacturing a carrier plate structure having a chip embedded therein is disclosed.
Abstract:
The present invention provides a circuit board having electronic components integrated therein, including a carrier board having an metallic oxide layer formed on each two surfaces of a metal layer, and having at least one through cavity; at least a semiconductor chip hold in the opening; at least a capacitor disposed on one surface of the carrier board, wherein the surface with the capacitor disposed thereon is at the same side with the active surface of the semiconductor chip. The capacitor is constituted of a first electrode plate disposed on partial surface of one side of the carrier board, a high dielectric material layer disposed on the surface of the first electrode plate, and a second electrode plate, paralleling and corresponding to the first electrode plate, disposed on the surface of the high dielectric material. The metal layer and the oxidation layer of the carrier board can enhance rigidity as well as tenacity and also integrate semiconductor chips and capacitors in the circuit board structure.
Abstract:
A plate structure having a chip embedded therein, comprises an aluminum plate having at least one aluminum oxide layer formed on its surface, and a cavity therein; a chip embedded in the cavity, wherein the chip has an active surface; at least one electrode pad mounted on the active surface; and a build-up structure mounted on the surface of the aluminum plate, the active surface of the chip, and the surface of the electrode pad, wherein the build-up structure comprises at least one conducting to electrically connect to the electrode pad. Besides, a method of manufacturing a plate structure having a chip embedded therein is disclosed. Therefore, the plate structure having a chip embedded therein can be processed by a simple method to achieve the tenacity of aluminum and the rigidity of aluminum oxide.
Abstract:
The present invention provides a circuit board having electronic components integrated therein, including a carrier board having an metallic oxide layer formed on each two surfaces of a metal layer, and having at least one through cavity; at least a semiconductor chip hold in the opening; at least a capacitor disposed on one surface of the carrier board, wherein the surface with the capacitor disposed thereon is at the same side with the active surface of the semiconductor chip. The capacitor is constituted of a first electrode plate disposed on partial surface of one side of the carrier board, a high dielectric material layer disposed on the surface of the first electrode plate, and a second electrode plate, paralleling and corresponding to the first electrode plate, disposed on the surface of the high dielectric material. The metal layer and the oxidation layer of the carrier board can enhance rigidity as well as tenacity and also integrate semiconductor chips and capacitors in the circuit board structure.
Abstract:
A plate structure having a chip embedded therein, comprises an aluminum oxide plate having an upper surface, a lower surface, plural aluminum channels connected to the upper surface and the lower surface, and a cavity therein; a chip embedded in the cavity, wherein the chip has an active surface; at least one electrode pad mounted on the active surface; and at least one build-up structure mounted on the surface of the aluminum oxide plate and the active surface of the chip, wherein the build-up structure comprises at least one conductive structure to electrically connect to the electrode pad. Besides, a method of manufacturing a plate structure having a chip embedded therein is disclosed.