Abstract:
A display device is provided with a light-emitting element layer including an anode electrode, a cathode electrode, and a quantum dot light-emitting layer sandwiched between the anode electrode and the cathode electrode, wherein the quantum dot light-emitting layer includes at least quantum dots and nanofibers. A method for manufacturing a display device includes forming a quantum dot light-emitting layer by applying a colloidal solution including at least quantum dots and nanofibers by ink-jet.
Abstract:
A light-control member (13) includes a substrate (39); light-shielding layers (40) provided in a first area (A1) on one surface (39a) of the substrate (39); a light-diffusion section (41) provided in an area other than the light-shielding layers (40) in the first area (A1) and formed of light transmitting material; and a support section(45) provided in a second area (A2) positioned on an outer side of the first area (A1) on the one surface (39a), in which the light-diffusion section (41) has a light emitting end surface (41a) in contact with the one surface (39a) of the substrate (39), a light incident end surface (41b) opposing the light emitting end surface (41a) and having an area greater than an area of the light emitting end surface (41a), and a reflective surface (41c) which is in contact with the light emitting end surface (41a) and the light incident end surface (41b) and on which light incident from the light incident end surface (41b) is reflected, and a formation area of the support section (45) per unit area in the second area (A2) is greater than a formation area of the support section (45) per unit area in the first area (A1).
Abstract:
A liquid crystal display (1) includes a liquid crystal panel (4), a backlight (2), and a light-diffusing member (7). There exist azimuths in which a transmittance of the liquid crystal panel (4) and a luminance of the backlight (2) are higher than a transmittance and a luminance in a direction of a normal. The azimuth in which the transmittance of the liquid crystal panel (4) is higher coincides with the azimuth in which the luminance of the backlight (2) is higher.
Abstract:
This light-diffusing member includes a light-transmissive substrate, a plurality of wavelength-controlling layers formed on one surface of the light-transmissive substrate, and a light-diffusing portion formed on the one surface of the light-transmissive substrate in a region other than a region where the wavelength-controlling layers are formed. The light-diffusing portion includes a light-emitting end-surface that makes contact with the light-transmissive substrate and a light-incident end-surface that is opposite to the light-emitting end-surface and that has an area greater than an area of the light-emitting end-surface, and is made of a photosensitive resin; a height of the light-diffusing portion from the light-incident end-surface to the light-emitting end-surface is greater than a thickness of the wavelength-controlling layers; and the wavelength-controlling layers have characteristics that an optical absorptance at a first wavelength in a ultraviolet wavelength band is higher than an optical absorptance at a second wavelength in a visible-light wavelength band.
Abstract:
A light absorbing member includes a first dichroic dye and a second dichroic dye. The first dichroic dye has an absorption peak wavelength between a first emission peak wavelength of the first light-emitting layer and a second emission peak wavelength of a second light-emitting layer. The second dichroic dye has an absorption peak wavelength between the second emission peak wavelength of the second light-emitting layer and a third emission peak wavelength of the third light-emitting layer. An angle of a molecule of the first dichroic dye in an absorption axis and an angle of a molecule of the second dichroic dye in an absorption axis with respect to a normal direction of the reflective layer are from 70 degrees to 90 degrees.
Abstract:
A light diffusion member includes a substrate that has optical transparency, a light diffusion portion that is formed with a prescribed height on one surface of the substrate, a light shielding layer that is formed with a thickness less than the height of the light diffusion portion in another region of the one surface of the substrate than the light diffusion portion, and an antiglare layer that is formed on the other surface of the substrate. The light diffusion portion includes a light emission end surface that contacts with the substrate, a light incident end surface that faces the light emission end surface and has a larger area than an area of the light emission end surface, and a side surface that is formed between the light emission end surface and the light incident end surface, and the antiglare layer includes a binder layer and plural light diffusion particles that are dispersedly arranged in the binder layer.
Abstract:
Provided is a display device including a substrate that has light transmissivity, a plurality of light shielding layers that is formed at a recurring period on one face of the substrate, and a light-diffusing unit that is formed in an area of the one face of the substrate except for the area where the light shielding layers are formed, in which the light-diffusing unit includes a light emitting end face on the substrate side and includes a light incident end face having an area larger than the area of the light emitting end face on the side opposite to the substrate side, the height of the light-diffusing unit from the light incident end face to the light emitting end face is greater than the thickness of the light shielding layer, and the periodic direction at which the light shielding layers are recurrently formed is non-parallel to the direction of a pixel pitch of a display body.
Abstract:
A light control member of the invention includes a light-transmissive first substrate, a light diffusing portion which is formed on a first surface of the first substrate, and a light shielding layer which is formed in a region other than a region in which the light diffusing portion is formed on the first surface of the first substrate. The light diffusing portion includes a light emitting end surface being in contact with the first substrate, and a light incident end surface opposite the light emitting end surface and having an area larger than an area of the light emitting end surface, and is configured such that a height from the light incident end surface to the light emitting end surface is larger than a layer thickness of the light shielding layer. The light shielding layer includes an enlarged portion in a portion of the light shielding layer in a layer thickness direction, the enlarged portion being configured such that a sectional area which is cut by a plane parallel to the first surface of the first substrate is larger than an area of a substrate side end surface of the light shielding layer.
Abstract:
A liquid crystal display device according to one aspect of the present invention includes a liquid crystal panel of a vertical alignment mode, and an optical control member disposed on a light-exiting side of the liquid crystal panel. The liquid crystal panel includes a plurality of pixels having at least two domains (50a, 50b), in which directors of liquid crystal molecules are in a first direction. An absorption axis of a first polarizing sheet and an absorption axis of a second polarizing sheet are a mutually orthogonal and form angle that is approximately 45°. The optical control member includes a base, a light diffusion part, a light blocking layer and a low refractive index part. A planar shape of the light blocking layer (40) when seen from a normal line direction of the base has a straight line part parallel to the absorption axis (P1, P2) of one of the first polarizing sheet and the second polarizing sheet and a straight line part forming an angle of less than 45° with the absorption axis (P1, P2) of one polarizing sheet.
Abstract:
This light diffusion member includes: a substrate having light transmissivity; a plurality of light shielding layers formed on one face of the substrate; and light diffusion portions formed on the one face of the substrate at regions other than the regions where the light shielding layers have been formed. The light diffusion portions have a light-emitting end surface coming into contact with the substrate, a light incident end surface which faces the light-emitting end surface and has a larger area than the area of the light-emitting end surface, and a reflecting face coming into contact with the light-emitting end surface and the light incident end surface, and reflecting light entering from the light incident end surface. The height from the light incident end surface to the light-emitting end surface of the light diffusion portion is greater than the thickness of the light shielding layers. A scattering intensity at an azimuth φ0+Δφ and a scattering intensity at an azimuth φ0−Δφ across a strong scattering azimuth φ0 as a center axis are generally the same.