摘要:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
摘要:
A sputtering target including an oxide with a low impurity concentration is provided. Provided is a method for manufacturing a sputtering target, including a first step of preparing a mixture including indium, zinc, an element M (the element M is aluminum, gallium, yttrium, or tin), and oxygen; a second step of raising a temperature of the mixture from a first temperature to a second temperature in a first atmosphere containing nitrogen at a concentration of higher than or equal to 90 vol % and lower than or equal to 100 vol %; and a third step of lowering the temperature of the mixture from the second temperature to a third temperature in a second atmosphere containing oxygen at a concentration of higher than or equal to 10 vol % and lower than or equal to 100 vol %.
摘要:
A metal oxide film including a crystal part and having highly stable physical properties is provided. The size of the crystal part is less than or equal to 10 nm, which allows the observation of circumferentially arranged spots in a nanobeam electron diffraction pattern of the cross section of the metal oxide film when the measurement area is greater than or equal to 5 nmφ and less than or equal to 10 nmφ.
摘要:
To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
摘要:
Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.
摘要:
Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.
摘要:
A semiconductor device includes an oxide semiconductor layer over a first oxide layer; first source and drain electrodes over the oxide semiconductor layer; second source and drain electrodes over the first source and drain electrodes respectively; a second oxide layer over the first source and drain electrodes; a gate insulating layer over the second source and drain electrodes and the second oxide layer; and a gate electrode overlapping the oxide semiconductor layer with the gate insulating layer provided therebetween. The structure in which the oxide semiconductor layer is sandwiched by the oxide layers can suppress the entry of impurities into the oxide semiconductor layer. The structure in which the oxide semiconductor layer is contacting with the source and drain electrodes can prevent increasing resistance between the source and the drain comparing one in which an oxide semiconductor layer is electrically connected to source and drain electrodes through an oxide layer.
摘要:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
摘要:
A highly reliable semiconductor device including an oxide semiconductor is provided. Provided is a semiconductor device including an oxide semiconductor layer, an insulating layer in contact with the oxide semiconductor layer, a gate electrode layer overlapping with the oxide semiconductor layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The oxide semiconductor layer includes a first region having a crystal whose size is less than or equal to 10 nm and a second region which overlaps with the insulating layer with the first region provided therebetween and which includes a crystal part whose c-axis is aligned in a direction parallel to a normal vector of the surface of the oxide semiconductor layer.
摘要:
The semiconductor device includes a first insulator over a substrate, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor in contact with the second oxide semiconductor, a third oxide semiconductor on the second oxide semiconductor and the first and second conductors, a second insulator over the third oxide semiconductor, and a third conductor over the second insulator. At least one of the first oxide semiconductor, the second oxide semiconductor, and the third oxide semiconductor has a crystallinity peak that corresponds to a (hkl) plane (h=0, k=0, l is a natural number) observed by X-ray diffraction using a Cu K-alpha radiation as a radiation source. The peak appears at a diffraction angle 2 theta greater than or equal to 31.3 degrees and less than 33.5 degrees.