Abstract:
An apparatus for X-ray inspection is provided. The apparatus includes: a stage on which an inspection target is loaded, the stage including a first surface and an opposite second surface; an X-ray generator disposed on or over the first surface of the inspection target and configured to irradiate the inspection target with incident X-rays; and a detection system disposed on or under the second surface of the inspection target and configured to detect first transmitted X-rays transmitted through the inspection target. The detection unit includes a first lens system and a second lens system. The first transmitted X-rays pass through one of the first lens system and the second lens system. The second lens system includes a micro zone plate.
Abstract:
A process management system can include a processing device that can be configured to perform a semiconductor process on a plurality of wafers, the processing device controlled by a process parameter. A control device can be configured to acquire statistical data relating to the process parameter and can be configured to select a reference wafer from the plurality of wafers. The control device can be configured to compare a respective process parameter used for the reference wafer with the statistical data and can be configured to set a reference condition for the process parameter.
Abstract:
A method for manufacturing a semiconductor device includes generating light, modulating power of the light to generate power-modulated light, acquiring an image signal of a measurement target using the power-modulated light, filtering the image signal to separate a real signal and a false signal, analyzing the measurement target using the real signal, and performing a semiconductor process on the measurement target based analyzing the measurement target using the real signal, wherein filtering the image signal includes classifying a first component of the image signal that is dependent on power of the power-modulated light as the real signal, and classifying a second component of the image signal that is independent of the power of the power-modulated light as the false signal.
Abstract:
A scanning probe inspector comprises: a probe that includes a cantilever and a tip whose length corresponds to a depth of a trench that is formed in a wafer; a trench detector that acquires location information of the trench using the probe, where the location information includes depth information of the trench; a controller that inserts the tip into a first point where there exists a trench based on the location information of the trench, and moves the tip through the trench using the location information of the trench; and a defect detector that detects a presence of a defect in a sidewall of the trench as the tip is moved through the trench.
Abstract:
A semiconductor pattern detecting apparatus is provided. The semiconductor pattern detecting apparatus includes a stage configured to position a wafer formed with a semiconductor pattern, the stage extending in a first direction and a second direction perpendicular to the first direction, an electron emitter configured to irradiate first electrons on the semiconductor pattern, an electrode configured to generate an electric field to induce an electric potential on a surface of the semiconductor pattern, a detector configured to detect second electrons emitted from the semiconductor pattern, an imager configured to obtain a plurality of first images by using the second electrons detected by the detector, and at least one controller configured to apply a first voltage and a second voltage different from the first voltage to the electrode alternately and repeatedly and to generate a second image by combining the plurality of first images, wherein the imager is so configured that each of the plurality of first images are obtained when the first voltage is applied to the electrode.
Abstract:
A scanning probe inspector comprises: a probe that includes a cantilever and a tip whose length corresponds to a depth of a trench that is formed in a wafer; a trench detector that acquires location information of the trench using the probe, where the location information includes depth information of the trench; a controller that inserts the tip into a first point where there exists a trench based on the location information of the trench, and moves the tip through the trench using the location information of the trench; and a defect detector that detects a presence of a defect in a sidewall of the trench as the tip is moved through the trench.