Abstract:
A method of manufacturing a pellicle includes preparing a pellicle frame having an adhesive layer coated thereon, treating a pellicle membrane with vapor under vapor atmosphere, attaching the pellicle membrane onto the pellicle frame, and drying the pellicle membrane.
Abstract:
A method of manufacturing a pellicle includes forming a membrane on a first surface of a substrate from a chemical reaction in which the substrate serves as a catalyst, forming a protective pattern on a second surface of the substrate, immersing the substrate in an etchant solution, such that a portion of the substrate exposed through the protective pattern is removed to form a frame, and replacing the etchant solution with a solvent.
Abstract:
A method and electronic device for receiving information is provided. The method includes transmitting, by the electronic device, a scan time and an identification of the information to cause the identified information to be broadcast at the scan time; and scanning, by the electronic device, during the scan time to receive the information. The electronic device includes a transmitter configured to transmit a scan time and an identification of the information to cause the identified information to be broadcast at the scan time; and a scanner configured to scan during the scan time to receive the information.
Abstract:
A method for transmitting audio data by a master device in a Bluetooth Low Energy (BLE)-based wireless communication system is provided. The method includes configuring a data packet to include identification information indicating whether the audio data is included in a payload of the data packet and transmitting the data packet to at least one slave device.
Abstract:
A method of manufacturing a pellicle includes preparing a pellicle frame having an adhesive layer coated thereon, treating a pellicle membrane with vapor under vapor atmosphere, attaching the pellicle membrane onto the pellicle frame, and drying the pellicle membrane.
Abstract:
A semiconductor device includes a substrate including a cell array region and a peripheral circuit region. The semiconductor device further includes a cell array disposed in the cell array region and including a plurality of cell strings connected to a bit line. The bit line extends in a first direction. The semiconductor device additionally includes a first cell row disposed in the peripheral circuit region and including a plurality of first cells arranged in a second direction crossing the first direction. The first and second directions being parallel to an upper surface of the substrate. The semiconductor device further includes a plurality of first interconnect lines each having a longitudinal axis in the first direction and connected to the plurality of first cells, and a plurality of first power lines extending in the second direction and connected to the plurality of first cells through the first interconnect lines.
Abstract:
An apparatus and a method are provided for receiving a signal in a communication system supporting a Gaussian frequency shift keying (GFSK) modulation scheme. The method includes receiving the signal; and estimating a codeword vector by performing a signal detecting operation based on a GFSK-maximum likelihood sequence estimation (MLSE) scheme, which is based on a GFSK modulation scheme and an MLSE scheme, on the received signal. States of a Viterbi trellis that are used in the GFSK-MLSE scheme are determined based on the GFSK modulation scheme.
Abstract:
A method for transmitting audio data by a master device in a Bluetooth Low Energy (BLE)-based wireless communication system is provided. The method includes configuring a data packet to include identification information indicating whether the audio data is included in a payload of the data packet and transmitting the data packet to at least one slave device.
Abstract:
The present disclosure relates to a method and an electronic device for processing data on the basis of a Bluetooth Low Energy (BLE) protocol. The electronic device includes a Bluetooth control module and a processor. The Bluetooth control module stores a modified BLE protocol stack including at least two Attribute Protocols (ATTs) for use with an application, the modified BLE protocol stack includes a first path and a second path. The first path includes a first ATT protocol to process an ATT command of the application, and the second path includes a second ATT protocol to process an ATT command of the application. The processor is coupled to the Bluetooth control module. The processor processes data of the application including the ATT command, using the modified BLE protocol stack including the at least two ATTs of the Bluetooth control module.