Abstract:
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
Abstract:
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
Abstract:
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
Abstract:
A method of designing an integrated circuit includes receiving input data defining the integrated circuit, receiving information from a standard cell library including a plurality of standard cells, receiving information from a modified cell library including at least one modified cell having a same function as a corresponding standard cell among the plurality of standard cells and having a higher routability than the corresponding standard cell and generating output data by performing placement and routing in response to the input data, the information from the standard cell library and the information from the modified cell library.
Abstract:
A computer-implemented method of designing an integrated circuit (IC) includes allocating a plurality of colors to a plurality of patterns corresponding to one layer of a first cell so that a multi-patterning technology is designated for use in forming the plurality of patterns, the first cell being a multi-height cell corresponding to a plurality of rows, generating a plurality of shift cells, in which a color remapping operation associated with the plurality of patterns is performed for each row, with respect to the first cell, and storing a cell set including the first cell and the plurality of shift cells in a standard cell library.
Abstract:
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
Abstract:
A double patterning layout design method comprises defining critical paths comprising a first path and a second path on a schematic circuit, and defining a double patterning layout divided into a first mask layout having a first color and a second mask layout having a second color, the double patterning layout corresponding to the schematic circuit. The defining of the double patterning layout comprises anchoring the critical paths on the schematic circuit.
Abstract:
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
Abstract:
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
Abstract:
A layout design system for designing a semiconductor device includes a processor, a storage module storing an intermediate design, and a correction module used by the processor to correct the intermediate design. The intermediate design includes an active region and dummy designs on the active region. Each dummy design includes a dummy structure and dummy spacers disposed at opposite sides of the dummy structure. The correction module is configured to alter widths of regions of at least some of the dummy designs. The corrected design is used to produce a semiconductor device having an active fin, a hard mask layer disposed on the active fin, a gate structure crossing the over the hard mask layer, and a spacer disposed on at least one side of the gate structure. The hard mask layer, and the active fin, are provided with widths that vary due to the dummy designs.