Abstract:
A substrate processing apparatus according to an embodiment includes: a chamber providing a processing space; a support member disposed in the processing space and configured to support a substrate during a process treatment; an antenna providing energy for plasma excitation into the processing space; and an inner electromagnet disposed outside the processing space.
Abstract:
A substrate assembly includes a first hexagonal boron nitride sheet directly bonded to a surface of a substrate, and a metal layer on the first hexagonal boron nitride sheet.
Abstract:
A method and an apparatus for transmitting and receiving data in a filter bank based multicarrier communication system are provided. The method includes receiving a plurality of data blocks and performing an Inverse Fast Fourier Transform (IFFT) operation on the plurality of data blocks, multiplying the plurality of data blocks on which IFFT has been performed and time axis filter coefficients, and transmitting a result obtained by adding the plurality of multiplied data blocks as a multi carrier signal.
Abstract:
Disclosed herein are a method of forming a transition metal dichalcogenide thin film and a method of manufacturing a device including the same. The method of forming a transition metal dichalcogenide thin film includes: providing a substrate in a reaction chamber; depositing a transition metal dichalcogenide thin film on the substrate using a sputtering process that uses a transition metal precursor and a chalcogen precursor and is performed at a first temperature; and injecting the chalcogen precursor in a gas state and heat-treating the transition metal dichalcogenide thin film at a second temperature that is higher than the first temperature. The substrate may include a sapphire substrate, a silicon oxide (SiO2) substrate, a nanocrystalline graphene substrate, or a molybdenum disulfide (MoS2) substrate.
Abstract:
Disclosed herein are a method of forming a transition metal dichalcogenide thin film and a method of manufacturing a device including the same. The method of forming a transition metal dichalcogenide thin film includes: providing a substrate in a reaction chamber; depositing a transition metal dichalcogenide thin film on the substrate using a sputtering process that uses a transition metal precursor and a chalcogen precursor and is performed at a first temperature; and injecting the chalcogen precursor in a gas state and heat-treating the transition metal dichalcogenide thin film at a second temperature that is higher than the first temperature. The substrate may include a sapphire substrate, a silicon oxide (SiO2) substrate, a nanocrystalline graphene substrate, or a molybdenum disulfide (MoS2) substrate.
Abstract:
A method of forming a substrate assembly includes preparing a substrate in a chamber, combining a solid-state nitrogen source and a boron source on the substrate, forming a metal layer on a surface of the substrate including the combined solid-state nitrogen and boron sources, and forming a first hexagonal boron nitride sheet directly bonded to the surface of the substrate by performing a heat treatment on the substrate including the metal layer and the combined solid-state nitrogen and boron sources.
Abstract:
A touch controller includes a touch data generator that is connected to a plurality of sensing lines, the touch data generator sensing a change in capacitance of a sensing unit connected to each of the sensing lines and generating touch data by processing the sensing signal corresponding to the result of sensing; and a signal processor that controls a timing of generating the touch data by receiving at least one piece of timing information for driving a display panel from a timing controller, and then providing either the timing information or a signal generated from the timing information as a control signal to the touch data generator.
Abstract:
A hexagonal boron nitride sheet having: a two-dimensional planar structure with a sp2 B—N covalent bond, a Van der Waals bond between boron-nitrogen layers, a root mean square surface roughness of about 2 nanometers or less, and a length of about 1 millimeter or greater.
Abstract:
Disclosed herein are a method of forming a transition metal dichalcogenide thin film and a method of manufacturing a device including the same. The method of forming a transition metal dichalcogenide thin film includes: providing a substrate in a reaction chamber; depositing a transition metal dichalcogenide thin film on the substrate using a sputtering process that uses a transition metal precursor and a chalcogen precursor and is performed at a first temperature; and injecting the chalcogen precursor in a gas state and heat-treating the transition metal dichalcogenide thin film at a second temperature that is higher than the first temperature. The substrate may include a sapphire substrate, a silicon oxide (SiO2) substrate, a nanocrystalline graphene substrate, or a molybdenum disulfide (MoS2) substrate.
Abstract:
In a method of operating the memory system, the method includes detecting whether data of a read-out unit read from a first cell region has an error correction code (ECC) failure, in response to an external read-out request for the read-out unit, recovering and outputting the data of the read-out unit by performing Redundant Array of Inexpensive Disk (RAID) recovery by using data and RAID parity read from other cell regions, recovering a plurality of pieces of data stored in the first cell region by performing the RAID recovery using the data and RAID parity read from the other cell regions, and migrating the recovered plurality of pieces of data to a second cell region in units of cell regions.