Abstract:
Method of operating electronic device including transmitter and receiver in wireless communication system and the electronic device are provided. The method includes acquiring signal passing through intermediate path between transmitter and receiver; estimating phase change in intermediate path, based on the signal and a reception signal predicted by a modeled system; and determining in-phase/quadrature (I/Q) mismatch parameters indicating a mismatch of I components and Q components of the transmitter and the receiver from the phase change. The electronic device includes a transmitter; a receiver; and at least one processor, configured to acquire a signal passing through an intermediate path between the transmitter and the receiver, estimate a phase change in the intermediate path, based on the signal and a reception signal predicted by a modeled system, and determine I/Q mismatch parameters indicating a mismatch of I components and Q components of the transmitter and the receiver from the phase change.
Abstract:
Provided are a method and apparatus for executing a device according to usage authority, wherein usage authority information for a first device may be received, usage authority for the first device may be identified based on the received usage authority information as well as telephone number information of a user, and the first device may be executed according to the identified usage authority for the first device.
Abstract:
Provided is a fingerprint authentication system and a method of authentication. The fingerprint authentication system may have a configuration to analyze a reflection wave signal reflected at a surface of an object under examination or an internal of the object under examination by applying a wave signal from at least one of signal communication unit of a fingerprint sensor to the object under examination. In the method of authentication, the controller in the fingerprint authentication system may be configured to selectively perform a first step authentication to authenticate a shape of a fingerprint, and a second step authentication to detect internal biometric information of the object under examination.
Abstract:
An electronic device may include: a magnetic sensor configured to identify the intensity of a magnetic field; a wireless communication circuit; a processor; and memory electrically connected to the magnetic sensor, the wireless communication circuit, and the processor, and storing instructions. The processor may be configured so that the electronic device: uses the magnetic sensor to identify a plurality of intensities of the magnetic field during a first period; identifies, on the basis of the plurality of intensities, whether a reference intensity has been updated; identifies a first state of the electronic device when the reference intensity has been updated, the first state being identified on the basis of a comparison result between the latest intensity among the plurality of intensities and the updated reference intensity; and performs a function according to the identified first state. Various other embodiments identified through the specification are possible.
Abstract:
An electronic device comprising: an ultraviolet (UV) light sensor; and a processor configured to: generate a plurality of initial UV light measurements by using the UV light sensor, wherein each of the plurality of initial UV light measurements is associated with a respective orientation of the electronic device; and select a reference UV light measurement from the plurality.
Abstract:
A housing of an electronic device according to an embodiment may include a combination of at least two housings, and the entire size or length of the electronic device may change according to relative movement between the housings. The electronic device may comprise: a flexible display configured to expand or contract according to a change in size of the electronic device. A portion of the flexible display may be inserted into the housing when the housing contracts and may be drawn out of the housing when the housing expands. The electronic device may comprise a distance sensor and/or an expansion sensor. The distance sensor is configured to measure a change in a relative distance of the housing, and the expansion sensor senses a contraction or expansion state of the housing, thereby contributing to correcting data measured by the distance sensor. The electronic device employing the distance sensor and/or the expansion sensor can accurately sense the size of an externally visible portion of a display and can display a screen appropriate to the size of the visible portion of the display.
Abstract:
An electronic device includes a rotating body coupled to a bezel part to be rotatable and including a plurality of magnets, a pair of Hall sensors configured to sense a magnetic field caused by the plurality of magnets, a magnetic sensor disposed in an internal space, and a processor configured to calibrate, based on first magnetic field data, second magnetic field data based on a calculated offset value.
Abstract:
An electronic device and method for fingerprint authentication are disclosed. The electronic device may include a sensor unit including a first sensor area for detecting a fingerprint via a swipe operation and a second sensor area for detecting the fingerprint via a touch operation, and at least one processor, which may implemented the method. The method may include detecting a touch input to the sensor unit and activating one of the first sensor area and the second sensor area according to whether the touch input is the swipe operation or the touch operation, and storing fingerprint information obtained through the activated first sensor area or second sensor area.
Abstract:
An electronic device according to various embodiments comprises: a display; a camera module; a sensor module including a first sensor, which is disposed on the rear part of the electronic device and operates on the basis of light, and a second sensor, which is disposed on the front part of the electronic device and operates on the basis of light; and a processor including a first processor and a second processor, wherein the processor can be configured to control the brightness of the display on the basis of data received from the first sensor and data received from the second sensor when the camera module is in an inactive state, and control the brightness of the display on the basis of data received from the second sensor, and not on the basis of data received from the first sensor, when the camera module is in an active state.
Abstract:
According to various embodiments, an electronic device may include: a housing configured to be mounted on or detached from an ear of a user, at least one processor disposed within the housing, an audio module including audio circuitry, and a sensor device including at least one sensor operatively coupled to the at least one processor and the audio module. The sensor device may be configured to: output acceleration-related data to the at least one processor through a first path of the sensor device, identify whether an utterance has been made during the output of the acceleration-related data; obtain bone conduction-related data based on the identification of the utterance; and output the obtained bone conduction-related data to the audio module through a second path of the sensor device.