Abstract:
A display device includes a first light emitting element, a second light emitting element, and a third light emitting element that are disposed on a substrate and emitting light of different colors, respectively; a first insulation layer disposed on the first light emitting element, the second light emitting element, and the third light emitting element, and including at least one opening; and a second insulation layer disposed on the first insulation layer, and disposed in the at least one opening, wherein a refractive index of the second insulation layer is higher than a refractive index of the first insulation layer, and the at least one opening overlaps at least one of the first light emitting element, the second light emitting element, and the third light emitting element in a plan view, and does not overlap at least another one in a plan view.
Abstract:
A method of driving a display panel in an organic light-emitting display device is provided. The method determines whether a single color image is displayed on the display panel or a multiple color image is displayed on the display panel, applies an initialization voltage, for initializing an anode of an organic light-emitting element included in a non-light-emitting pixel, to the anode of the organic light-emitting element included in the non-light-emitting pixel when the multiple color image is displayed on the display panel, and applies a lateral leakage prevention voltage that is higher than the initialization voltage to an anode of an organic light-emitting element included in an adjacent non-light-emitting pixel that is located within a reference distance from a light-emitting pixel when the single color image is displayed on the display panel.
Abstract:
A compound for an organic light emitting device is represented by Chemical Formula 1. An organic light emitting device includes a first electrode, a second electrode facing the first electrode and an organic layer between the first electrode and the second electrode, and the organic layer includes a compound represented by Chemical Formula 1. In the above Chemical Formula 1, Ar and L are the same as defined in the specification.
Abstract:
An organic light-emitting display device includes a plurality of anodes and an auxiliary electrode disposed on the substrate. The auxiliary electrode is separated from the plurality of the anodes. The organic light-emitting display device further includes an organic layer disposed on the plurality of the anodes, an opening penetrating the organic layer to expose the auxiliary electrode, and a cathode disposed on the organic layer and the exposed auxiliary electrode. The cathode is electrically connected to the auxiliary electrode. The opening has a first width at a proximal end and a second width at a distal end. The distal end is closer to the auxiliary electrode than the proximal end. The first width is smaller than the second width.
Abstract:
A method of manufacturing an organic light-emitting display device is provided. A plurality of anodes and an auxiliary electrode are formed on a substrate. The auxiliary electrode is separated from the plurality of the anodes. An organic layer is formed on the plurality of the anodes and the auxiliary electrode. An opening is formed in the organic layer by applying a voltage to the auxiliary electrode. The opening exposes the auxiliary electrode. A cathode is formed on the organic layer and the exposed auxiliary electrode. The cathode is electrically connected to the exposed auxiliary electrode.
Abstract:
A display device includes a substrate, pixel electrodes on the substrate, a bank in which opening areas partially exposing the pixel electrodes are defined, organic light emitting layers disposed on the pixel electrodes, a common electrode disposed on the organic light emitting layers and the bank, an encapsulation layer disposed on the common electrode, a touch electrode which is disposed on the encapsulation layer and does not overlap the opening areas in a thickness direction, a first adhesive member disposed on the touch electrode, a first light blocking layer which is disposed on the first adhesive member and does not overlap the opening areas in the thickness direction, color filters which are disposed on the first adhesive member and overlap the opening areas in the thickness direction, and a support layer which is disposed on the first light blocking layer and the color filters and includes a first organic material.
Abstract:
Provided are a fluorinated compound for patterning a metal or an electrode (cathode), an organic electronic element using the same, and an electronic device thereof, wherein a fine pattern of the electrode is formed by using the fluorinated compound as a material for patterning a metal or an electrode (cathode), without using a shadow mask, and it is possible to more easily apply UDC since it is easy to manufacture a transparent display having high light transmittance.
Abstract:
Provided are a fluorinated compound for patterning a metal or an electrode (cathode), an organic electronic element using the same, and an electronic device thereof, wherein a fine pattern of the electrode is formed by using the fluorinated compound as a material for patterning a metal or an electrode (cathode), without using a shadow mask, and it is possible to more easily apply UDC since it is easy to manufacture a transparent display having high light transmittance.
Abstract:
A light emitting diode according to an exemplary embodiment of the present invention includes: a first electrode; a second electrode overlapping the first electrode; an emission layer disposed between the first electrode and the second electrode; and a capping layer disposed on the second electrode, wherein the capping layer satisfies Equation 1 below. n*k(λ=405 nm)≦0.8. Equation 1 In Equation 1, n*k (λ=405 nm) represents an optical value that is a product of a refractive index and an absorption coefficient in a 405 nanometer wavelength.
Abstract:
A deposition apparatus and method for depositing an organic material includes an effusion cell, a guide rail, and a cooling channel. The effusion cell extends in a first direction. The guide rail is below the effusion cell and extends in a second direction. The cooling channel is below an upper surface of the guide rail and extends in the second direction.