Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one aspect, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one aspect, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one embodiment, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
An apparatus for depositing an organic material and a depositing method thereof, wherein a deposition process is performed with respect to a second substrate while transfer and alignment processes are performed with respect to a first substrate in a chamber, so that loss of an organic material wasted in the transfer and alignment processes can be reduced, thereby maximizing material efficiency and minimizing a processing tack time. The apparatus includes a chamber having an interior divided into a first substrate deposition area and a second substrate deposition area, an organic material deposition source transferred to within ones of the first and second substrate deposition areas to spray particles of an organic material onto respective ones of first and second substrates and a first transferring unit to rotate the organic material deposition source in a first direction from one of the first and second substrate deposition areas to an other of the first and second substrate deposition areas.
Abstract:
A substrate centering device for an organic material deposition system comprises: a plurality of substrate support holders configured to be reciprocally movable in a facing direction within an organic material deposition chamber and supporting both side portions of a substrate loaded by a robot; a substrate centering unit configured to be reciprocally movable at each of the substrate support holders and centering the substrate by guiding both side portions of the substrate; and a plurality of substrate clampers configured to be reciprocally movable in a vertical direction at each of the substrate support holders, and clamping the substrate that has been centered by the substrate centering unit.