Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one aspect, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
A method of manufacturing a flat panel display is disclosed. In one aspect, the method includes preparing first and second mother substrates, forming a plurality of display cells on at least one of the mother substrates, forming a plurality of sealant lines enclosing the respective cells on either one of the mother substrates and assembling and sealing the two mother substrates with the sealant lines interposed therebetween. The method also includes mounting the two mother substrates on a stage, irradiating a laser beam to a defined light irradiation region of the mother substrates and cutting the mother substrates while moving the light irradiation region along an imaginary cut line where the mother substrates are to be cut. The light irradiation region includes a linear region and a curved region.
Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one aspect, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
A linear evaporation source and a deposition apparatus having the same are disclosed. In one embodiment, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
Abstract:
An organic light-emitting apparatus including: a substrate; an organic light-emitting device disposed on the substrate and including a first electrode, a second electrode, and an intermediate layer disposed between the first electrode and the second electrode; and an encapsulation layer provided to cover the organic light-emitting device. The encapsulation layer includes a first inorganic layer including a first fracture point, and a first fracture control layer provided on the first inorganic layer to seal the first fracture point.
Abstract:
A method of forming nanocrystals and a method of manufacturing an organic light-emitting display apparatus that includes a metal compound thin film having the nanocrystals. The method of forming nanocrystals includes forming a metal compound thin film under a first pressure by using a reactive sputtering process, and forming the nanocrystals in the metal compound thin film under a second pressure that is lower than the first pressure by using the reactive sputtering process.
Abstract:
An organic light-emitting apparatus including: a substrate; an organic light-emitting device disposed on the substrate and including a first electrode, a second electrode, and an intermediate layer disposed between the first electrode and the second electrode; and an encapsulation layer provided to cover the organic light-emitting device. The encapsulation layer includes a first inorganic layer including a first fracture point, and a first fracture control layer provided on the first inorganic layer to seal the first fracture point.
Abstract:
A method of manufacturing a flat panel display is disclosed. In one aspect, the method includes preparing first and second mother substrates, forming a plurality of display cells on at least one of the mother substrates, forming a plurality of sealant lines enclosing the respective cells on either one of the mother substrates and assembling and sealing the two mother substrates with the sealant lines interposed therebetween. The method also includes mounting the two mother substrates on a stage, irradiating a laser beam to a defined light irradiation region of the mother substrates and cutting the mother substrates while moving the light irradiation region along an imaginary cut line where the mother substrates are to be cut. The light irradiation region includes a linear region and a curved region.