Abstract:
A thin film forming apparatus and a thin film forming method using the same are disclosed. In one aspect, the thin film forming apparatus comprises a mask that includes a blocking portion and an opening. It also includes an etching source that jets an etching gas through the opening of the mask to etch a thin film according to a pattern. The mask includes a gas blower for blowing a gas around the opening so that the etching gas does not penetrate into a thin film area corresponding to the block portion. When the thin film forming apparatus is used, a normal residual area of a thin film may be safely preserved and patterning may be accurately performed. Thus, the quality of a product manufactured by using the thin film forming apparatus may be improved.
Abstract:
An organic light emitting diode display is disclosed. In one aspect, the display includes a pixel electrode formed on a substrate and a pixel defining layer on the pixel electrode, the pixel defining layer having an opening exposing a part of the pixel electrode, and a stepped side wall of the opening. The display also includes an organic emission layer on the pixel electrode in the opening of the pixel defining layer and a common electrode covering the organic emission layer and the pixel defining layer. The pixel defining layer has a stepped side wall of the opening.
Abstract:
A thin-film depositing apparatus including a mask, and a chucking unit for adhering the mask to a surface of a substrate, wherein the chucking unit includes a plurality of magnet units that contact another surface of the substrate by independently rising or falling by using their weight and thus are magnetically combined with the mask.
Abstract:
A deposition apparatus includes a deposition chamber, a plurality of substrate holders comprising a first holder configured to maintain a substrate at a first substrate position in the deposition chamber and a second holder configured to maintain another substrate at a second substrate position in the deposition chamber, a deposition source disposed in the deposition chamber and configured to supply a deposition material to apply onto substrates placed at the first and second substrate positions, and a deposition source transfer mechanism configured to move the deposition source to be opposite to one of the first and second substrates in a first direction, a substrate transfer mechanism configured to transfer a substrate in a second direction to or from the first substrate position and further configured to transfer another substrate in the second direction to or from the second substrate position.
Abstract:
A thin-film depositing apparatus including a mask, and a chucking unit for adhering the mask to a surface of a substrate, wherein the chucking unit includes a plurality of magnet units that contact another surface of the substrate by independently rising or falling by using their weight and thus are magnetically combined with the mask.
Abstract:
A deposition apparatus uniformly controlling deposited quantities of a plurality of depositing sources by efficiently determining an abnormal depositing source. The deposition apparatus may reduce loss of materials by exactly determining an abnormal depositing source. The deposition apparatus includes: a plurality of depositing sources spraying a deposition material; a substrate holder fixing a substrate to face the depositing source; a depositing source shutter disposed at one side of the depositing source and opening and closing an passage of each depositing source; and a main shutter disposed between the depositing source and the substrate fixed to the substrate holder and depositing a part of the deposition material on the substrate through the main shutter.
Abstract:
A method of manufacturing an organic light emitting display apparatus by utilizing a deposition apparatus for forming an organic layer on a substrate includes: fixing the substrate to a mask assembly for forming a common layer or a mask assembly for forming a pattern layer in a loading unit; when the one or more deposition assemblies are separated from the substrate, forming an intermediate layer by depositing a deposition material discharged from the one or more deposition assemblies in a deposition unit of the deposition apparatus onto the substrate while the substrate is moved relative to the one or more deposition assemblies by a first conveyer unit; and separating the substrate on which the deposition is finished from the mask assembly for forming the common layer or the mask assembly for forming the pattern layer in an unloading unit.
Abstract:
A deposition apparatus uniformly controlling deposited quantities of a plurality of depositing sources by efficiently determining an abnormal depositing source. The deposition apparatus may reduce loss of materials by exactly determining an abnormal depositing source. The deposition apparatus includes: a plurality of depositing sources spraying a deposition material; a substrate holder fixing a substrate to face the depositing source; a depositing source shutter disposed at one side of the depositing source and opening and closing an passage of each depositing source; and a main shutter disposed between the depositing source and the substrate fixed to the substrate holder and depositing a part of the deposition material on the substrate through the main shutter.
Abstract:
A monitoring apparatus is provided to monitor an amount of a liquid discharged from a nozzle. The monitoring apparatus includes a discharge case. The discharge case is configured to receive liquid discharged from a nozzle. The discharge case includes a storage space for storing the liquid. A photographing unit photographs the level of the liquid stored in the storage space.
Abstract:
A deposition apparatus may uniformly control deposited quantities of a plurality of depositing sources by efficiently determining an abnormal depositing source. The deposition apparatus may reduce loss of materials by exactly determining an abnormal depositing source. The deposition apparatus includes: a plurality of depositing sources spraying a deposition material; a substrate holder fixing a substrate to face the depositing source; a depositing source shutter disposed at one side of the depositing source and opening and closing an passage of each depositing source; and a main shutter disposed between the depositing source and the substrate fixed to the substrate holder and depositing a part of the deposition material on the substrate through the main shutter.