Abstract:
A deposition apparatus includes a deposition chamber, a plurality of substrate holders comprising a first holder configured to maintain a substrate at a first substrate position in the deposition chamber and a second holder configured to maintain another substrate at a second substrate position in the deposition chamber, a deposition source disposed in the deposition chamber and configured to supply a deposition material to apply onto substrates placed at the first and second substrate positions, and a deposition source transfer mechanism configured to move the deposition source to be opposite to one of the first and second substrates in a first direction, a substrate transfer mechanism configured to transfer a substrate in a second direction to or from the first substrate position and further configured to transfer another substrate in the second direction to or from the second substrate position.
Abstract:
A flat panel display device provides a sealing structure for comprising and sealing a display unit disposed in a first region on a substrate. The display unit includes the first region and a second region, and a barrier is disposed in the first region on the substrate, on an outer side of the display unit, and adjacent to the second region. The sealing structure contacts the barrier, and includes at least one first layer of an inorganic material and at least one second layer of an organic material. A method of manufacturing the flat panel display device is also disclosed.
Abstract:
A method of manufacturing an organic light emitting display apparatus includes preparing a substrate having a pixel electrode and a pixel defining layer exposing the pixel electrode, forming a hole injection layer (HIL) on the substrate to cover the pixel electrode and the pixel defining layer, forming a primer layer on the HIL, patterning the primer layer to leave a region corresponding to at least a portion of the pixel electrode, removing a portion of the HIL to expose an outer portion of the substrate, and forming an opposing electrode to cover the HIL and the outer portion of the substrate.
Abstract:
A flat panel display device provides a sealing structure for comprising and sealing a display unit disposed in a first region on a substrate. The display unit includes the first region and a second region, and a barrier is disposed in the first region on the substrate, on an outer side of the display unit, and adjacent to the second region. The sealing structure contacts the barrier, and includes at least one first layer of an inorganic material and at least one second layer of an organic material. A method of manufacturing the flat panel display device is also disclosed.
Abstract:
A flat panel display device provides a sealing structure for comprising and sealing a display unit disposed in a first region on a substrate. The display unit includes the first region and a second region, and a barrier is disposed in the first region on the substrate, on an outer side of the display unit, and adjacent to the second region. The sealing structure contacts the barrier, and includes at least one first layer of an inorganic material and at least one second layer of an organic material. A method of manufacturing the flat panel display device is also disclosed.
Abstract:
A thin film forming apparatus and a thin film forming method using the same are disclosed. In one aspect, the thin film forming apparatus comprises a mask that includes a blocking portion and an opening. It also includes an etching source that jets an etching gas through the opening of the mask to etch a thin film according to a pattern. The mask includes a gas blower for blowing a gas around the opening so that the etching gas does not penetrate into a thin film area corresponding to the block portion. When the thin film forming apparatus is used, a normal residual area of a thin film may be safely preserved and patterning may be accurately performed. Thus, the quality of a product manufactured by using the thin film forming apparatus may be improved.
Abstract:
A method of manufacturing an organic light emitting display apparatus includes preparing a substrate having a pixel electrode and a pixel defining layer exposing the pixel electrode, forming a hole injection layer (HIL) on the substrate to cover the pixel electrode and the pixel defining layer, forming a primer layer on the HIL, patterning the primer layer to leave a region corresponding to at least a portion of the pixel electrode, removing a portion of the HIL to expose an outer portion of the substrate, and forming an opposing electrode to cover the HIL and the outer portion of the substrate.
Abstract:
An organic light emitting diode display is disclosed. In one aspect, the display includes a pixel electrode formed on a substrate and a pixel defining layer on the pixel electrode, the pixel defining layer having an opening exposing a part of the pixel electrode, and a stepped side wall of the opening. The display also includes an organic emission layer on the pixel electrode in the opening of the pixel defining layer and a common electrode covering the organic emission layer and the pixel defining layer. The pixel defining layer has a stepped side wall of the opening.
Abstract:
A deposition apparatus uniformly controlling deposited quantities of a plurality of depositing sources by efficiently determining an abnormal depositing source. The deposition apparatus may reduce loss of materials by exactly determining an abnormal depositing source. The deposition apparatus includes: a plurality of depositing sources spraying a deposition material; a substrate holder fixing a substrate to face the depositing source; a depositing source shutter disposed at one side of the depositing source and opening and closing an passage of each depositing source; and a main shutter disposed between the depositing source and the substrate fixed to the substrate holder and depositing a part of the deposition material on the substrate through the main shutter.
Abstract:
A monitoring apparatus is provided to monitor an amount of a liquid discharged from a nozzle. The monitoring apparatus includes a discharge case. The discharge case is configured to receive liquid discharged from a nozzle. The discharge case includes a storage space for storing the liquid. A photographing unit photographs the level of the liquid stored in the storage space.