Abstract:
A liquid crystal display includes first and second gate lines and first and second data lines, on a first substrate, a first thin film transistor connected to the first gate and data lines and including a first source and drain electrode, a second thin film transistor connected to the second gate and data lines and including a second source and drain electrode, first and second pixel electrodes contacting a portion of the first and second drain electrodes, respectively, a passivation layer on the first and second pixel electrodes and the first and second thin film transistors, and a reference electrode on a passivation layer and overlapping the first pixel electrode and the second pixel electrode. The reference electrode includes a plurality of branch electrodes. The first thin film transistor is right of the first data line and the second thin film transistor is left of the second data line.
Abstract:
An array substrate includes a thin film transistor on a substrate, a color pattern on the substrate, a light blocking pattern on the thin film transistor, an organic insulation layer covering the color pattern and the light blocking pattern, a pixel electrode on the organic insulation layer, and a low-reflective pattern on the pixel electrode. An opening portion is defined in the light blocking pattern and exposes the thin film transistor. A contact hole is defined in the organic insulation layer and corresponding to the opening portion. The pixel electrode is electrically connected to the thin film transistor through the contact hole. The low-reflective pattern corresponds to the opening portion.
Abstract:
An array substrate includes a thin film transistor on a substrate, a color pattern on the substrate, a light blocking pattern on the thin film transistor, an organic insulation layer covering the color pattern and the light blocking pattern, a pixel electrode on the organic insulation layer, and a low-reflective pattern on the pixel electrode. An opening portion is defined in the light blocking pattern and exposes the thin film transistor. A contact hole is defined in the organic insulation layer and corresponding to the opening portion. The pixel electrode is electrically connected to the thin film transistor through the contact hole. The low-reflective pattern corresponds to the opening portion.
Abstract:
A liquid crystal display includes first and second gate lines and first and second data lines, on a first substrate, a first thin film transistor connected to the first gate and data lines and including a first source and drain electrode, a second thin film transistor connected to the second gate and data lines and including a second source and drain electrode, first and second pixel electrodes contacting a portion of the first and second drain electrodes, respectively, a passivation layer on the first and second pixel electrodes and the first and second thin film transistors, and a reference electrode on a passivation layer and overlapping the first pixel electrode and the second pixel electrode. The reference electrode includes a plurality of branch electrodes. The first thin film transistor is right of the first data line and the second thin film transistor is left of the second data line.
Abstract:
A liquid crystal display panel includes a base substrate, a first step difference compensating pattern, a gate metal pattern, a semiconductor pattern, a source electrode, a drain electrode, a pixel electrode and a color filter. The first step difference compensating pattern is disposed on the base substrate and includes an inorganic material. The gate metal pattern is disposed on the first step difference compensating pattern and includes a gate electrode and a gate line electrically connected to the gate electrode. The semiconductor pattern is overlapped with the gate electrode. The source electrode is electrically connected to the semiconductor pattern. The drain electrode is electrically connected to the semiconductor pattern and is spaced apart from the source electrode. The pixel electrode is electrically connected to the drain electrode. The color filter is overlapped with the pixel electrode.
Abstract:
A liquid crystal display includes first and second gate lines and first and second data lines, on a first substrate, a first thin film transistor connected to the first gate and data lines and including a first source and drain electrode, a second thin film transistor connected to the second gate and data lines and including a second source and drain electrode, first and second pixel electrodes contacting a portion of the first and second drain electrodes, respectively, a passivation layer on the first and second pixel electrodes and the first and second thin film transistors, and a reference electrode on a passivation layer and overlapping the first pixel electrode and the second pixel electrode. The reference electrode includes a plurality of branch electrodes. The first thin film transistor is right of the first data line and the second thin film transistor is left of the second data line.
Abstract:
A liquid crystal display panel includes a base substrate, a first step difference compensating pattern, a gate metal pattern, a semiconductor pattern, a source electrode, a drain electrode, a pixel electrode and a color filter. The first step difference compensating pattern is disposed on the base substrate and includes an inorganic material. The gate metal pattern is disposed on the first step difference compensating pattern and includes a gate electrode and a gate line electrically connected to the gate electrode. The semiconductor pattern is overlapped with the gate electrode. The source electrode is electrically connected to the semiconductor pattern. The drain electrode is electrically connected to the semiconductor pattern and is spaced apart from the source electrode. The pixel electrode is electrically connected to the drain electrode. The color filter is overlapped with the pixel electrode.