Abstract:
A flexible electrode for a display device may include a conductive structure including a lower conductive pattern disposed on a substrate and an upper conductive pattern disposed on the lower conductive pattern, and an electrode layer disposed on the substrate, the electrode layer being adjacent to the conductive structure. A width of a top surface of the lower conductive pattern may be less than a width of a bottom surface of the upper conductive pattern.
Abstract:
In a method of manufacturing a thin film transistor substrate, a first metal layer is formed on a first surface of a base substrate. The base substrate is cooled by contacting the first metal layer with a first cooling plate and by contacting a second surface of the base substrate with a second cooling plate. The first and second surfaces of the base substrate face opposite directions. A gate electrode is formed by patterning the first metal layer. A source electrode and a drain electrode are formed. The source electrode is spaced apart from the drain electrode. The source and drain electrodes partially overlap the gate electrode. A pixel electrode electrically connected to the drain electrode is formed.
Abstract:
A display substrate includes a gate metal pattern including a gate line disposed on a base substrate and a gate electrode electrically connected with the gate line, an active pattern entirely overlapped with the gate metal pattern and comprising an oxide semiconductor and a data metal pattern disposed on the active pattern and including a data line, a source electrode electrically connected with the gate line and a drain electrode spaced apart from the source electrode. The active pattern has an overlapped region in which the active pattern is overlapped with the source electrode and the drain electrode and an exposed region in which the active pattern is not overlapped with the source electrode and the drain electrode. The thickness of the overlapping region and a thickness of the exposing region are same.
Abstract:
A transparent display device includes a base substrate having a pixel area and a transmission area, a barrier layer disposed on the base substrate, a pixel circuit disposed in the pixel area, a display structure disposed on the pixel circuit, a transmitting structure disposed in the transmission area, an adhesive layer disposed between the base substrate and the barrier layer, and between the base substrate and the transmitting structure, and a transmitting window defined in the transmission area where the transmitting structure may include a composition including silicon oxynitride, the adhesive layer may include aluminum oxide, and the transmitting window may expose a surface of the transmitting structure.
Abstract:
A method of manufacturing a thin-film transistor substrate includes: applying a composition on a substrate to form a thin-film on the substrate, heating the thin-film, and patterning the thin-film to form an oxide semiconductor pattern. The composition includes a metal nitrate and water. The potential of hydrogen (pH) of the composition is about 1 to about 4.