Abstract:
A method of manufacturing a detection sensor is disclosed. The method includes forming a biometric information sensing layer including a transistor on a base layer, forming an initial optical pattern layer on the biometric information sensing layer, patterning the initial optical pattern layer to form a plurality of transmissive portions spaced apart from each other and having a first zeta potential, coating a light blocking material to form an initial light blocking portion that covers a side surface and an upper surface of the transmissive portions and has a second zeta potential different from the first zeta potential, and polishing the initial light blocking portion such that the upper surface of the transmissive portions is exposed to form a light blocking portion. The initial light blocking portion is polished by the abrasive, which has the first zeta potential, using a pad.
Abstract:
A laser annealing apparatus includes a beam splitter that splits a laser beam emitted from a laser source into a reflection light beam and a transmission light beam, a beam vibrator that makes an irradiation point of the reflection light beam or the transmission light beam vibrate in a predetermined direction, a beam inverter that inverts the reflection light beam or the transmission light beam, and a light collector that collects the reflection light and the transmission light.
Abstract:
A substrate polishing system includes: a polishing machine and a substrate transporter. The polishing machine includes: a lower surface plate to which a substrate is mounted, and an upper surface plate which faces the lower surface plate and polishes the substrate in cooperation with the lower surface plate, the upper surface plate having a larger area than the substrate mounted on the lower surface plate. The substrate transporter is adjacent to the polishing machine and commonly transports the substrate to and from the polishing machine in a first direction, attaches the substrate to the lower surface plate before polishing thereof, and separates from the lower surface plate the substrate after polishing thereof.
Abstract:
A laser crystallizing apparatus includes a laser generator that generates an incident laser beam that includes a P polarization component and an S polarization component, an optical system that converts the incident laser beam to generate an emitted laser beam, and a stage on which is mounted a target substrate with a target thin film which is laser-crystallized by being irradiated by the emitted laser beam. The optical system includes at least one half wave plate (HWP) that shifts a polarization axis direction of the incident laser beam received from the laser generator, at least one mirror that fully reflects the laser beam, and at least one polarization beam splitter (PBS) which reflects a part of the laser beam and transmits the other part of the laser beam.
Abstract:
A display device includes: a substrate; an inorganic insulating layer disposed on the substrate; a conductor disposed on the inorganic insulating layer; and an organic insulating layer disposed on the conductor, where an opening is defined through the organic insulating layer to expose a part of the upper surface of the conductor, and at least one material selected from a siloxane, a thiol, a phosphate, a disulfide including a sulfur series, and an amine is bonded on the part of the upper surface of the conductor exposed through the opening.
Abstract:
A method for manufacturing a display device includes forming a first gate metal wire on a substrate, forming a first insulation layer that covers the first gate metal wire, forming a second gate metal wire on the first insulation layer, forming a second main insulation layer that covers the second gate metal wire, forming a second auxiliary insulation layer on the second main insulation layer, forming an exposed portion of an upper surface of the second main insulation layer by polishing the second auxiliary insulation layer, and forming a first data metal wire on the second main insulation layer and the second auxiliary insulation layer.
Abstract:
A method of manufacturing a display device includes: forming an active layer on a substrate; forming a first insulation layer covering the active layer; forming a gate metal line on the first insulation layer; forming a third insulation layer covering the gate metal line and including a silicon oxide; forming a fourth insulation layer including a silicon nitride on the third insulation layer; forming a fifth insulation layer including a silicon oxide on the fourth insulation layer; arranging a blocking member over a region in which the active layer and the gate metal line overlap; forming a fifth auxiliary insulation layer by doping nitrogen ions in the fifth insulation layer; and exposing a part of an upper surface of the fourth insulation layer by removing a portion of a fifth main insulation layer of the fifth insulation layer which does not overlap the fifth auxiliary insulation layer.
Abstract:
A laser crystallizing apparatus includes a laser generator that generates an incident laser beam that includes a P polarization component and an S polarization component, an optical system that converts the incident laser beam to generate an emitted laser beam, and a stage on which is mounted a target substrate with a target thin film which is laser-crystallized by being irradiated by the emitted laser beam. The optical system includes at least one half wave plate (HWP) that shifts a polarization axis direction of the incident laser beam received from the laser generator, at least one mirror that fully reflects the laser beam, and at least one polarization beam splitter (PBS) which reflects a part of the laser beam and transmits the other part of the laser beam.
Abstract:
A polishing slurry is disclosed which includes about 0.01 wt % to about 10 wt % of polishing particles, about 0.005 wt % to about 0.1 wt % of a dispersing agent, about 0.001 wt % to about 1 wt % of an oxide-polishing promoter including a pyridine compound, about 0.05 wt % to about 0.1 wt % of a nitride-polishing inhibitor including an amino acid or an anionic organic acid, and water. A method for manufacturing a display device including an active pattern disposed on a base substrate, a gate metal pattern including a gate electrode overlapping the active pattern, a planarized insulation layer disposed on the gate metal pattern, and a source metal pattern disposed on the planarized insulation layer is also disclosed.
Abstract:
A display device includes a planarization layer covering transistors in a display area on a substrate, an organic light emitting diode on the planarization layer, a pad electrode in a non-display area on the substrate surrounding the display area, and a sacrificial layer remnant capping a side surface of the pad electrode.