Abstract:
A touch substrate includes a base substrate, a common electrode and a wire electrode. The base substrate has a plurality of common electrode areas. A common electrode is disposed in each of the common electrode areas. The common electrode has a plurality of first electrode lines extended in a first direction and arranged in a second direction crossing the first direction and a plurality of second electrode lines arranged in the first direction. The wire electrode is connected to an end of the common electrode to apply a voltage to the common electrode. The common electrode and the wire electrode are simultaneously formed through a same process using a printing substrate.
Abstract:
According to a method of manufacturing a thin film transistor substrate, a composition including a metal oxalate and a solvent for manufacturing an oxide semiconductor is coated to form a thin film, the thin film is annealed, and the thin film is patterned to form a semiconductor pattern.
Abstract:
A liquid crystal display with two insulating substrates. A first insulating substrate has crossing signal lines, a pixel electrode, and a drain electrode electrically connected to the pixel electrode through a contact hole. A spacer is formed on the first signal line of the first insulating substrate, and is wider at a first portion close to the first insulating substrate than at a second portion close to the second insulating substrate.
Abstract:
A liquid crystal display with two insulating substrates. A first insulating substrate has crossing signal lines, a pixel electrode, and a drain electrode electrically connected to the pixel electrode through a contact hole. A spacer is formed on the first signal line of the first insulating substrate, and is wider at a first portion close to the first insulating substrate than at a second portion close to the second insulating substrate, and the drain electrode comprises a first portion and a second portion extending in a different direction with respect to the first portion.
Abstract:
A display substrate includes a gate line, a gate insulation layer, a data line, a switching element, a protection insulation layer, a gate pad portion and a data pad portion. The gate insulation layer is disposed on the gate line. The switching element is connected to the gate line and the data line. The protection insulation layer is disposed on the switching element. The gate pad portion includes a first gate pad electrode which makes contact with an end portion of the gate line through a first hole formed through the gate insulation layer, and a second gate pad electrode which makes contact with the first gate pad electrode through a second hole formed through the protection insulation layer. The data pad portion includes a data pad electrode which makes contact with an end portion of the data line through a third hole formed through the protection insulation layer.
Abstract:
A display substrate includes a gate line, a gate insulation layer, a data line, a switching element, a protection insulation layer, a gate pad portion and a data pad portion. The gate insulation layer is disposed on the gate line. The switching element is connected to the gate line and the data line. The protection insulation layer is disposed on the switching element. The gate pad portion includes a first gate pad electrode which makes contact with an end portion of the gate line through a first hole formed through the gate insulation layer, and a second gate pad electrode which makes contact with the first gate pad electrode through a second hole formed through the protection insulation layer. The data pad portion includes a data pad electrode which makes contact with an end portion of the data line through a third hole formed through the protection insulation layer.
Abstract:
A thin-film transistor substrate includes a gate line, and a gate electrode connected to the gate line, on a base substrate; an insulating layer on the gate electrode, the insulating layer including a first part and a second part, the first part having a hydrophobic property and the second part having a hydrophilic property; a data line extended in a different direction from the gate line, and a source electrode connected to the data line and on the second part of the insulating layer; a drain electrode on the second part of the insulating layer, the drain electrode spaced apart from the source electrode; a semi-conductor pattern overlapping the source electrode, the drain electrode and a gap between the spaced apart source and drain electrodes, where the semi-conductor pattern exposes the first part of the insulating layer; and a pixel electrode in contact with the drain electrode.