Abstract:
A display apparatus includes a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixel groups. Each of the pixel groups includes a first pixel and a second pixel disposed adjacent to the first pixel. The first and second pixels together include n (n is an odd number equal to or greater than 3) sub-pixels. The first and second pixels share their collective {(n+1)/2}th sub-pixel.
Abstract:
A display apparatus comprises a display panel including a plurality of color sub-pixels which are arranged as a plurality of sub-pixel columns and a plurality of sub-pixel rows, a first pixel column and a second pixel column which include a plurality of sub-pixel columns, a luminance controller configured to correct color grayscale data of at least one color sub-pixel included in at least one of the first and second pixel columns by 1-grayscale based on a luminance difference between the first and second pixel columns, and a data driver configured to convert the color grayscale data of the color sub-pixel to a data voltage and to provide the display panel with the data voltage.
Abstract:
A data processing device, which processes and provides data to a plurality of logical pixels of a display device, includes: a data analysis part which analyzes information of text, color, line or edge in each of the data; and a data compensation part which compensates text data corresponding to a logical pixel which does not express text color among the data having the information of text based on the information analyzed in the data analysis part, where each of the logical pixels of the display device comprises at least one of red, green, blue and optional color sub-pixels.
Abstract:
Provided is a display device. The display device includes: a plurality of gate lines extending in a first direction; a plurality of data lines extending in a second direction that intersects the first direction; and a plurality of pixels connected to the gate lines and the data lines, wherein the pixels include pixels h-th row pixels (h is a natural number) and (h+1)-th row pixels, which are adjacent to each other in the second direction, with a (k+1)-th gate line (k is a natural number) therebetween among the gate lines; and a first pixel displaying a first color and connected to the (k+1)-th gate line among the h-th row pixels and a second pixel displaying the first color and connected to the (k+1)-th gate line among the (h+1)-th row pixels are spaced apart from each other in the first direction and receive different polarities of data voltages.
Abstract:
A method of driving a light source includes outputting a light source control signal controlling a plurality of light sources, and outputting a plurality of light source driving signals to the light sources, respectively, based on the light source control signal, wherein the light source driving signals have different bit values.
Abstract:
A method of driving a light-source which provides a display panel displaying a picture during at least one frame period with light, includes determining a dimming-level configured to control a luminance of the light based on image data, determining whether the dimming-level of a current picture corresponds to a repetition dimming mode based on the dimming-level of a first previous picture, the first previous picture being displayed on the display panel prior to the current picture, and determining the dimming-level of the current picture to a fixed dimming-level in the repetition dimming mode.
Abstract:
A display device includes a display panel comprising a plurality of pixels, a data driver configured to generate data voltages based on a gamma reference voltage, and to provide the data voltages to the plurality of pixels, a gate driver configured to provide gate signals to the plurality of pixels, and a controller configured to control the data driver and the gate driver. The controller is configured to initialize the gamma reference voltage when a blank period starts in a frame period comprising an active period and the blank period, and to change the gamma reference voltage when a duration of the blank period reaches at least one threshold time.
Abstract:
A display apparatus includes a frame memory storing an input image signal having first and second reference blank durations respectively corresponding to a first frame and a second frame. A blank controller circuit determines a second delay blank duration based on the first and second reference blank durations and a first delay blank duration, a signal delay part generates an output image signal having the first and second delay blank durations corresponding to the first frame and second frame, respectively, is based on the stored input image signal, and a display panel displays an image based on the output image signal. The display apparatus may reduce or prevent flicker caused by variations in driving frequency that may be variable on a per-frame basis. A blank duration of a frame is controller, or a frame may be inserted in a blank duration based on blank durations of adjacent frames.
Abstract:
A stage of a gate driving circuit includes: a first control transistor diode-connected between a first input end of the stage and a first node, biased by a first input signal, and back-biased by a second input signal; a second control transistor including a control end which receives a third input signal, a first end connected to the first node, and a second end connected to a first voltage, and back-biased by a fourth input signal; a first output transistor including a control end connected to the first node, a first end connected to a clock input end of the stage, and a second end connected to a first output end of the stage; and a capacitor connected between the control and second ends of the first output transistor. The second input signal and the fourth input signal have enable levels during different periods.
Abstract:
A display apparatus includes a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixel groups. Each of the pixel groups includes a first pixel and a second pixel disposed adjacent to the first pixel. The first and second pixels together include n (n is an odd number equal to or greater than 3) sub-pixels. The first and second pixels share their collective {(n+1)/2}th sub-pixel.