Abstract:
Provided is an image processing method of processing first red, green, and blue (RGB) data with a display device including a pixel configured with red, green, blue, and white sub-pixels and providing the processed data. The method includes receiving the first RGB data, rendering the first RGB data to generate second RGB data and white (W) data, converting the first RGB data into hue, saturation, and value (HSV) data, obtaining RGB compensation data by using the HSV data on the basis of a lookup table, compensating for the second RGB data by using the RGB compensation data, and outputting the compensated second RGB data and the W data.
Abstract:
A field sequential display apparatus includes a backlight including a plurality of light sources which emits light of different colors, and a grayscale representation unit including a plurality of sub-pixels, in which the plurality of light sources includes a first light source which emits light of a first color, the plurality of sub-pixels includes a first type sub-pixel covered with a color filter of a second color, which is different from the first color, and the first type sub-pixel displays a third color, which is different from the first and second colors, using the light emitted from the first light source and passed through the color filter of the second color.
Abstract:
A display apparatus includes a first substrate and a second substrate. The first substrate includes a light shielding layer including a first opening which transmits a light. The second substrate includes a shutter including a second opening which corresponds to the first opening, and a first flexible electrode part which is connected to one end of the shutter and transmits or blocks the light by moving the shutter. The first flexible electrode part includes a first flexible electrode, a second flexible electrode, and an insulation pattern. The insulation pattern insulates the first flexible electrode and the second flexible electrode from each other, and exposes upper and lower surfaces of the first flexible electrode and the second flexible electrode which are parallel to the second substrate, by covering portions of the first flexible electrode and the second flexible electrode.
Abstract:
Provided is a display apparatus. The display apparatus includes a plurality of gate lines configured to receive gate signals and extending in a first direction, a plurality of data lines configured to receive data voltages and extending in a second direction that intersects the first direction, a plurality of pixels connected to the gate lines and data lines, and a plurality of inversion lines configured to receive inversion voltages having polarities opposite to those of the data voltages and extending in the second direction.
Abstract:
Provided is a display device. The display device includes: a gamma mapping unit; a compensating signal generation unit including a limit gray scale determination unit outputting a white limit gray scale value; and a hue control compensation unit including a main color compensation unit and a white compensation unit. The white compensation unit decreases a gray scale value of the white image signal based on the white limit gray scale value to generate the white compensated signal and the main color compensation unit compensates the red, green and blue image signals based on the white limit gray scale value to generate the red, green and blue compensated signals, when gray scale value of the white image signal is larger than the white limit gray scale value.
Abstract:
A display apparatus includes a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixel groups. Each of the pixel groups includes a first pixel and a second pixel disposed adjacent to the first pixel. The first and second pixels together include n (n is an odd number equal to or greater than 3) sub-pixels. The first and second pixels share their collective {(n+1)/2}th sub-pixel.
Abstract:
A display substrate includes a base substrate, a high reflective layer, a metal light reflective layer and a low reflective layer. The high reflective layer is on the base substrate, and includes a high refractive layer and a low refractive layer which alternate with each other. The high refractive layer has a first refractive index, and the low refractive layer has a second refractive index smaller than the first refractive index. The metal light reflective layer is between the high reflective layer and the low reflective layer, and reflects a light. The low reflective layer comprises a light absorbing layer which absorbs a light, and at least one insulating layer. Accordingly, a light utilizing efficiency and a display quality may be increased.
Abstract:
A display apparatus includes a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixel groups. Each of the pixel groups includes a first pixel and a second pixel disposed adjacent to the first pixel. The first and second pixels together include n (n is an odd number equal to or greater than 3) sub-pixels. The first and second pixels share their collective {(n+1)/2}th sub-pixel.
Abstract:
A display apparatus includes first-kind data lines and second-kind data lines. Each of the first-kind data lines is connected to one of two pixels arranged in a k-th pixel row and a (k+1)th pixel row. Each of the second-kind data lines is connected to two pixels arranged in different pixel columns in the k-th pixel row and the (k+1)th pixel row. At least two first-kind data lines are consecutively arranged.