Abstract:
According to an embodiment, a display apparatus includes gate lines extending in a first direction, data lines extending in a second direction crossing the first direction, and pixels connected to the gate lines and the data lines. The pixels include pixels arranged in a k-th row and pixels arranged in a (k+1)th row disposed adjacent to the pixels arranged in the k-th row in the second direction. An (i+1)th gate line is disposed between the pixels in the k-th row and the pixels in the (k+1)th row. A first pixel arranged in a g-th column among the pixels arranged in the k-th row and a second pixel arranged in the g-th column among the pixels arranged in the (k+1)th row are connected to a j-th data line. The pixels arranged in the k-th row are alternately connected to an i-th gate line and the (i+1)th gate line.
Abstract:
A driving controller includes a logo detector. The logo detector includes a histogram extractor which receives input image data and extracts a first histogram from logo area data of the input image data, a first histogram regenerator electrically connected to the histogram extractor and configured to receive the first histogram from the histogram extractor to generate a second histogram based on the first histogram and a logo map determiner electrically connected to the histogram extractor and the first histogram regenerator, and configure to select one of the first histogram and the second histogram to generate a first logo map. The driving controller is configured to compensate the logo area data of the input image data using the first logo map.
Abstract:
The present invention provides a display device including a first block including a first primary color pixel and a second primary color pixel having substantially a same area, a second block alternatingly disposed with the first block along the first direction, the second block including a third primary color pixel, a fourth primary color pixel and a white pixel. The first block and the second block have substantially a same area and the third primary color pixel has an area wider than the fourth primary color pixel and the white color pixel.
Abstract:
A driving controller of a display device includes a driving frequency controller for receiving an image signal, determining a driving frequency based on the image signal, and outputting a masking enable signal corresponding to the driving frequency, and an image processor for converting the image signal into a data signal and outputting the data signal, wherein the image processor sequentially converts, based on the masking enable signal being at an active level, a part of bits of the image signal into the data signal corresponding to a plurality of dither patterns.
Abstract:
A driving controller of a display device includes a driving frequency controller for receiving an image signal, determining a driving frequency based on the image signal, and outputting a masking enable signal corresponding to the driving frequency, and an image processor for converting the image signal into a data signal and outputting the data signal, wherein the image processor sequentially converts, based on the masking enable signal being at an active level, a part of bits of the image signal into the data signal corresponding to a plurality of dither patterns.
Abstract:
An object detection post-processing device of a display device, includes: an input to receive position information of an object that is detected from input image data for the display device in a current frame; a position information storage device to accumulatively store the position information of a plurality of previous frames; an accumulated position calculator to generate accumulated position information according to the position information of the current frame and the position information of the plurality of previous frames; and a position information determiner to determine final position information according to the accumulated position information, and to output the final position information.
Abstract:
A display apparatus comprises a display panel including a plurality of color sub-pixels which are arranged as a plurality of sub-pixel columns and a plurality of sub-pixel rows, a first pixel column and a second pixel column which include a plurality of sub-pixel columns, a luminance controller configured to correct color grayscale data of at least one color sub-pixel included in at least one of the first and second pixel columns by 1-grayscale based on a luminance difference between the first and second pixel columns, and a data driver configured to convert the color grayscale data of the color sub-pixel to a data voltage and to provide the display panel with the data voltage.
Abstract:
A display device includes a display panel, a memory, a dithering processor, and a panel driver. The display panel includes a display surface, and the memory stores dither patterns with respect to at least one spot area included in the display surface. The dithering processor selects a dither pattern among the dither patterns in a predetermined time unit and outputs a compensation image signal corresponding to the dither pattern. The panel driver outputs a data signal corresponding to the spot area based on the compensation image signal. Each of the dither patterns includes a first grayscale area having a first grayscale value higher than a first target grayscale value of the spot area and a second grayscale area having a second grayscale value lower than the first target grayscale value.
Abstract:
Provided is an image processing method of processing first red, green, and blue (RGB) data with a display device including a pixel configured with red, green, blue, and white sub-pixels and providing the processed data. The method includes receiving the first RGB data, rendering the first RGB data to generate second RGB data and white (W) data, converting the first RGB data into hue, saturation, and value (HSV) data, obtaining RGB compensation data by using the HSV data on the basis of a lookup table, compensating for the second RGB data by using the RGB compensation data, and outputting the compensated second RGB data and the W data.
Abstract:
A method of driving a light source includes outputting a light source control signal controlling a plurality of light sources, and outputting a plurality of light source driving signals to the light sources, respectively, based on the light source control signal, wherein the light source driving signals have different bit values.