Abstract:
A method of manufacturing a silicon carbide substrate has the following steps. A silicon carbide source material is partially sublimated. After partially sublimating the silicon carbide source material, a seed substrate having a main surface is placed in a growth container. By sublimating the remainder of the silicon carbide source material in the growth container, a silicon carbide crystal grows on the main surface of the seed substrate. In this way, an increase of dislocations in the main surface of the seed substrate can be suppressed, thereby providing a method of manufacturing a silicon carbide substrate having few dislocations.
Abstract:
There is obtained an ingot in which generation of crack is suppressed. The ingot includes: a seed substrate formed of silicon carbide; and a silicon carbide layer grown on the seed substrate. The silicon carbide layer has a thickness of 15 mm or more in a growth direction. When measuring a lattice constant in the silicon carbide layer at a plurality of measurement points in the growth direction, a difference between a maximum value of the lattice constant and a minimum value of the lattice constant is 0.004 nm or less. A distance between adjacent two points of the measurement points is 5 mm.
Abstract:
A silicon carbide substrate has a main surface. The main surface is constituted of an outer peripheral region and a central region. The outer peripheral region is a region within 5 mm from an outer edge of the main surface. The central region is surrounded by the outer peripheral region. A standard deviation of lifetimes of minority carriers in the central region is 0.7 ns or less. A standard deviation of lifetimes of minority carriers in the central region before a process of heating to a temperature 1600-° C. to 1900° C. is performed is defined as a first standard deviation. A standard deviation of lifetimes of minority carriers in the central region after the process is performed is defined as a second standard deviation. A value obtained by subtracting the first standard deviation from the second standard deviation is 10% or less of the first standard deviation.
Abstract:
A silicon carbide substrate includes a first main surface, a second main surface, a threading screw dislocation, and a blind scratch. The second main surface is located opposite to the first main surface. The threading screw dislocation extends to each of the first main surface and the second main surface. The blind scratch is exposed at the first main surface and extends linearly as viewed in a direction perpendicular to the first main surface. A value obtained by dividing an area density of the blind scratch by an area density of threading screw dislocation is smaller than 0.13.
Abstract:
A crucible has a bottom and a cylindrical side surface. In the crucible, a source material is sublimated to grow a single crystal. The crucible includes a third region configured to receive a source material, a second region extending from the third region in a direction away from the bottom, and a first region extending from the second region in a direction away from the bottom. The crucible includes a first wall and a second wall inside the side surface. The first wall surrounds the first region, the second wall surrounds the second region. The crucible includes a first chamber between the first wall and the side surface and a second chamber between the second wall and the side surface. The distance between horizontal opposite portions on the first wall is constant or increases as the horizontal opposite portions approach the bottom.
Abstract:
A middle cross-section includes a dense region in which an area density of threading screw dislocations is 2 or more times an overall average area density. An area of the dense region is 10% or less of an area of the middle cross-section. A line density of a stacking fault in each of a first and a second cross-sections is 1/cm or less, the first cross-section being separated from a first boundary toward a second boundary by a distance of 0.1 times a distance between the first and second boundaries, the second cross-section being a cross-section separated from the second boundary toward the first boundary by a distance of 0.1 times the distance between the first and second boundaries. The middle cross-section includes a sparse density region in which an area density of threading screw dislocations is lower than half the overall average area density. An area of the sparse density region is 12% or more of the area of the middle cross-section.
Abstract:
A silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface. The silicon carbide substrate includes screw dislocations and pits having a maximum diameter of 1 μm or more and 10 μm or less in a direction parallel to the first main surface. When the screw dislocations and the pits are observed in the first main surface, a percentage obtained by dividing a number of the pits by a number of the screw dislocations is 1% or less. A concentration of magnesium in the first main surface is less than 1×1011 atoms/cm2.
Abstract:
Provided is a method for manufacturing a silicon carbide single crystal capable of easily separating a silicon carbide single crystal from a pedestal. The method includes the step of fixing a seed substrate to a pedestal with a stress buffer layer being interposed therebetween, the step of growing a silicon carbide single crystal on the seed substrate, the step of separating the silicon carbide single crystal from the pedestal at the stress buffer layer, and the step of removing a residue of the stress buffer layer adhering to the silicon carbide single crystal subjected to the step of separating.
Abstract:
A silicon carbide substrate includes a dopant. The silicon carbide substrate has, on an off-downstream side with respect to a center of the silicon carbide substrate in plan view, a portion having a resistivity lower than a resistivity at the center of the silicon carbide substrate in plan view. A value obtained by dividing a difference between the resistivity of the silicon carbide substrate at the center of the silicon carbide substrate in plan view and a minimum resistivity of the silicon carbide substrate on the off-downstream side with respect to the center of the silicon carbide substrate in plan view by the resistivity of the silicon carbide substrate at the center of the silicon carbide substrate in plan view is 0.015 or less. The resistivity of the silicon carbide substrate increases from a position at which the silicon carbide substrate has the minimum resistivity toward the off-downstream side.
Abstract:
In a case where a detector is positioned in a [11-20] direction, and where a first measurement region including a center of a main surface is irradiated with an X ray in a direction within ±15° relative to a [−1-120] direction, a ratio of a maximum intensity of a first intensity profile is more than or equal to 1500. In a case where the detector is positioned in a direction parallel to a [−1100] direction, and where the first measurement region is irradiated with an X ray in a direction within ±6° relative to a [1-100] direction, a ratio of a maximum intensity of a second intensity profile is more than or equal to 1500. An absolute value of a difference between maximum value and minimum value of energy at which the first intensity profile indicates a maximum value is less than or equal to 0.06 keV.