Abstract:
A system, such as a System-on-Chip includes an interface component or PLUG which generates transactions over an IP block, such as an interconnect serving one or more clients via virtual channels. The client or clients are mapped onto the virtual channels via client/virtual channel mappings. The virtual channels are provided as a first set of virtual channels in the interface component which cooperate with a second set of virtual channels in the IP block. First and second client/virtual channel mappings for the first set of virtual channels and the second set of virtual channels are provided. The first and second client/virtual channel mappings are separately programmable and mutually decoupled from one another.
Abstract:
A method includes providing at least one target bandwidth for bandwidth usage on an interconnect, the target bandwidth being for traffic associated with a traffic initiator. The method also includes measuring a served bandwidth and resetting the measuring of served bandwidth in response to an occurrence of an event.
Abstract:
An embodiment of the present disclosure relates to a device comprising an electronic circuit; an oscillation circuit comprising a quartz crystal, configured to provide a clock signal to the electronic circuit; and a heater configured to increase the temperature of the quartz crystal.
Abstract:
A system, such as a System-on-Chip includes an interface component or PLUG which generates transactions over an IP block, such as an interconnect serving one or more clients via virtual channels. The client or clients are mapped onto the virtual channels via client/virtual channel mappings. The virtual channels are provided as a first set of virtual channels in the interface component which cooperate with a second set of virtual channels in the IP block. First and second client/virtual channel mappings for the first set of virtual channels and the second set of virtual channels are provided. The first and second client/virtual channel mappings are separately programmable and mutually decoupled from one another.
Abstract:
The present disclosure relates to an electronic device comprising a first capacitor and a quartz crystal coupled in series between a first node and a second node; an inverter coupled between the first and second nodes; a first variable capacitor coupled between the first node and a third node; and a second variable capacitor coupled between the second node and the third node.
Abstract:
An embodiment of the present disclosure relates to a device comprising an electronic circuit; an oscillation circuit comprising a quartz crystal, configured to provide a clock signal to the electronic circuit; and a heater configured to increase the temperature of the quartz crystal.
Abstract:
An apparatus includes an output configured to output data to a communication path of an interconnect for routing to a target and a rate controller configured to control a rate of the output data. The rate controller is configured to control the rate in response to feedback information from the target.
Abstract:
The present disclosure relates to an electronic device comprising a first capacitor and a quartz crystal coupled in series between a first node and a second node; an inverter coupled between the first and second nodes; a first variable capacitor coupled between the first node and a third node; and a second variable capacitor coupled between the second node and the third node.
Abstract:
The present disclosure relates to a method for controlling a device comprising an oscillation circuit, configured to provide a clock signal to a radio frequency circuit, and an antenna, in which the enabling of the passage of the signal from the circuit to the antenna is delayed with respect to an instant from which a power amplifier of the circuit is enabled.
Abstract:
A system for designing Network-on-Chip interconnect arrangements includes a Network-on-Chip backbone with a plurality of backbone ports and a set of functional clusters of aggregated IPs providing respective sets of System-on-Chip functions. The functional clusters include respective sub-networks attachable to any of the backbone ports and to any other functional cluster in the set of functional clusters independently of the source map of the Network-on-Chip backbone.