Abstract:
In a reinforcing system for reinforcing a cavity of a structural element, a support element is connected to the structural element in the structural element for reinforcement purposes. The support element has channels, an adhesive is disposed in the cavity between the support element and the structural element, and the adhesive can be introduced into the cavity between the support element and the structural element by means of the channels.
Abstract:
A composition including at least one curable structural adhesive, and at least one chemically crosslinked elastomer on the bases of a silane-functional polymer, wherein the elastomer is in the form of an interpenetrating polymer network in the structural adhesive. The composition can be used to form a shape-memory material and is suitable for reinforcing cavities in structural components such as, for example, in automobile bodies.
Abstract:
A composition having at least one structural adhesive and at least one chemically crosslinked elastomer based on the silane-functional, non-polar polymer, said elastomer being provided in the form of a penetrating polymer network in the structural adhesive. Self-supporting adhesive bodies, particularly in the form of adhesive tapes, can be produced from such compositions and can be used for structural bonds and to reinforce metal structures.
Abstract:
A composition, including at least one curable structural adhesive, and at least one thermoplastic elastomer, wherein the thermoplastic elastomer is present in the structural adhesive as penetrating polymer network. Such a composition constitutes a so-called shape memory material and is suitable for reinforcing cavities in structural components, such as, for example, in automobile bodies.
Abstract:
A composition including at least one curable structural adhesive, and at least one chemically cross-linked elastomer, wherein the chemically cross-linked elastomer is present in the structural adhesive as penetrating polymer network. Such a composition constitutes a so-called shape memory material and is suitable for reinforcing cavities in structural components, such as, for example, in automobile bodies.
Abstract:
A composition including at least one curable structural adhesive, and at least one chemically crosslinked elastomer on the bases of a silane-functional polymer, wherein the elastomer is in the form of an interpenetrating polymer network in the structural adhesive. The composition can be used to form a shape-memory material and is suitable for reinforcing cavities in structural components such as, for example, in automobile bodies.
Abstract:
A composition is described which includes A) a chain-extended prepolymer, which can be obtained from the reaction of a) a polymer containing at least one amino, thiol or hydroxyl group, b) at least one polyisocyanate and c) at least one alkoxylated bisphenol as chain extender, and optionally d) an epoxide compound containing a primary or secondary hydroxy group, said compound containing a primary or secondary hydroxyl group, or at least one epoxy resin A which contains this epoxide compound, and optionally B) an epoxy resin B. The composition is suitable as a toughener or as an A component of a 2k epoxy resin adhesive which contains this toughener. The adhesive is suitable particularly for bonding in windmills.
Abstract:
A composition is described which includes A) a chain-extended prepolymer, which can be obtained from the reaction of a) a polymer containing at least one amino, thiol or hydroxyl group, b) at least one polyisocyanate and c) at least one alkoxylated bisphenol as chain extender, and optionally d) an epoxide compound containing a primary or secondary hydroxy group, said compound containing a primary or secondary hydroxyl group, or at least one epoxy resin A which contains this epoxide compound, and optionally B) an epoxy resin B. The composition is suitable as a toughener or as an A component of a 2k epoxy resin adhesive which contains this toughener. The adhesive is suitable particularly for bonding in windmills.
Abstract:
An oligomeric condensation product can be obtained from at least one (hydroxymethyl)phenol of general formula (I), in which R1 is hydrogen or —CH3, R2 is —CH2OH, and R3 is hydrogen or —CH3, at least one polyamine, and optionally at least one phenol compound having two centres reactive by means of a reaction with the methylol groups of the (hydroxymethyl)phenol.
Abstract:
Heat-curing epoxy resin compositions are characterized by high impact strength, good storage stability, and a low curing temperature. The epoxy resin compositions are suitable for use as a construction shell adhesive and for producing structural foams. They can already be cured in so-called bottom-baking conditions. Furthermore, it has been found that the use of an accelerator of the formula (Ia) or (Ib) results in an increase of the impact strength of heat-curing epoxy resin compositions.