Abstract:
A semiconductor device includes a first semiconductor package including a first mold part, a second semiconductor package including a second mold part, a connecting pattern configured to electrically connect the first and second semiconductor packages to each other, and a molding pattern between the first and second semiconductor packages. The molding pattern extends to cover at least a portion of a sidewall of only the second semiconductor package.
Abstract:
A semiconductor package includes: a redistribution substrate; a semiconductor chip on the redistribution substrate; and an external terminal on a bottom surface of the redistribution substrate, wherein the redistribution substrate comprises: a first insulating layer including a first opening; a second insulating layer on the first insulating layer and including a second opening, wherein the second opening is positioned in the first opening in a plan view; a first barrier metal layer disposed along a sidewall of the first opening and along a sidewall of the second opening; a first redistribution conductive pattern on the first barrier metal layer; a third insulating layer on a bottom surface of the first insulating layer; and a pad penetrating the third insulating layer and electrically connecting to the first redistribution conductive pattern, wherein the external terminal is provided on the pad, wherein the second insulating layer at least partially covers a chip pad of the semiconductor chip, and the second opening at least partially exposes the chip pad, wherein, inside the second insulating layer, the first barrier metal layer is in contact with the chip pad through the second opening, and wherein the first redistribution conductive pattern has a surface roughness including protrusions extending in a range of from about 0.01 μm to about 0.5 μm, and the first insulating layer has a surface roughness smaller than the surface roughness of the first redistribution conductive pattern.
Abstract:
Provided is a semiconductor chip. The semiconductor chip includes a semiconductor substrate including a main chip region and a scribe lane region surrounding the main chip region. An insulating layer is disposed over the semiconductor substrate. A guard ring is disposed in the insulating layer in the scribe lane region. The guard ring surrounds at least a portion of the main chip region. The guard ring has a brittleness greater than a brittleness of the insulating layer.
Abstract:
A method of fabricating a semiconductor package including forming a preliminary first insulating layer including a first opening, curing the preliminary first insulating layer to form a first insulating layer, forming a preliminary second insulating layer on the first insulating layer at least partially filling the first opening. The method includes forming a second opening in the preliminary second insulating layer at least partially overlapping the first opening. A sidewall of the first opening is at least partially exposed during forming the second opening. The preliminary second insulating layer is cured to form a second insulating layer. A barrier metal layer is formed along the sidewall of the first opening and along a sidewall of the second opening. A redistribution conductive pattern is formed on the barrier metal layer. A planarization process is performed to at least partially expose the second insulating layer.
Abstract:
Provided is a semiconductor chip. The semiconductor chip includes a semiconductor substrate including a main chip region and a scribe lane region surrounding the main chip region. An insulating layer is disposed over the semiconductor substrate. A guard ring is disposed in the insulating layer in the scribe lane region. The guard ring surrounds at least a portion of the main chip region. The guard ring has a brittleness greater than a brittleness of the insulating layer.
Abstract:
A semiconductor package includes: a redistribution substrate; a semiconductor chip on the redistribution substrate; and an external terminal on a bottom surface of the redistribution substrate, wherein the redistribution substrate comprises: a first insulating layer including a first opening; a second insulating layer on the first insulating layer and including a second opening, wherein the second opening is positioned in the first opening in a plan view; a first barrier metal layer disposed along a sidewall of the first opening and along a sidewall of the second opening; a first redistribution conductive pattern on the first barrier metal layer; a third insulating layer on a bottom surface of the first insulating layer; and a pad penetrating the third insulating layer and electrically connecting to the first redistribution conductive pattern, wherein the external terminal is provided on the pad, wherein the second insulating layer at least partially covers a chip pad of the semiconductor chip, and the second opening at least partially exposes the chip pad, wherein, inside the second insulating layer, the first barrier metal layer is in contact with the chip pad through the second opening, and wherein the first redistribution conductive pattern has a surface roughness including protrusions extending in a range of from about 0.01 μm to about 0.5 μm, and the first insulating layer has a surface roughness smaller than the surface roughness of the first redistribution conductive pattern.
Abstract:
A semiconductor package includes: a redistribution substrate; a semiconductor chip on the redistribution substrate; and an external terminal on a bottom surface of the redistribution substrate, wherein the redistribution substrate comprises: a first insulating layer including a first opening; a second insulating layer on the first insulating layer and including a second opening, wherein the second opening is positioned in the first opening in a plan view; a first barrier metal layer disposed along a sidewall of the first opening and along a sidewall of the second opening; a first redistribution conductive pattern on the first barrier metal layer; a third insulating layer on a bottom surface of the first insulating layer; and a pad penetrating the third insulating layer and electrically connecting to the first redistribution conductive pattern, wherein the external terminal is provided on the pad, wherein the second insulating layer at least partially covers a chip pad of the semiconductor chip, and the second opening at least partially exposes the chip pad, wherein, inside the second insulating layer, the first barrier metal layer is in contact with the chip pad through the second opening, and wherein the first redistribution conductive pattern has a surface roughness including protrusions extending in a range of from about 0.01 μm to about 0.5 μm, and the first insulating layer has a surface roughness smaller than the surface roughness of the first redistribution conductive pattern.
Abstract:
Provided is a semiconductor package including a lower package, an interposer on the lower package, and an upper package on the interposer. The lower package may include a lower package substrate, a lower semiconductor chip on the lower package substrate, and a lower heat-transfer layer on the lower semiconductor chip. The interposer may include an interposer substrate, first and second heat-transfer openings defined by recessed bottom and top surfaces, respectively, of the interposer substrate, an upper interposer heat-transfer pad disposed in the second heat-transfer opening, and an upper heat-transfer layer disposed on the upper interposer heat-transfer pad. The upper package may include an upper package substrate, an upper package heat-transfer pad, which may be disposed in a third heat-transfer opening defined by a recessed bottom surface of the upper package substrate, and an upper semiconductor chip disposed on the upper package substrate.
Abstract:
A semiconductor package may include a semiconductor chip mounted on a substrate, a molding part protecting the semiconductor chip and having a top surface at a substantially equal height to a top surface of the semiconductor chip, a heat exhausting part on the molding part and the semiconductor chip, and an adhesive part between the heat exhausting part and the molding part and between the heat exhausting part and the semiconductor chip. An interface between the heat exhausting part and the adhesive part has a concave-convex structure.