Abstract:
A resistive memory device includes a switching device disposed on a lower interconnection, a resistor element disposed on the switching device, and an upper interconnection disposed on the resistor element. The switching device includes a diode electrode, a high-concentration lower anode disposed on the diode electrode, a middle-concentration lower anode disposed on the lower high-concentration anode electrode, a common cathode disposed on the middle-concentration lower anode, a low-concentration upper anode disposed on the common cathode, and an high-concentration upper anode disposed on the low-concentration upper anode. The peak dopant concentration of the middle-concentration lower anode is at least 10 times greater than the peak dopant concentration of the low-concentration upper anode.
Abstract:
A resistive memory device includes a first word line extending in a first horizontal direction, a second word line extending on the first word line in the first horizontal direction, a third word line extending on the second word line in the first horizontal direction, a first bit line extending between the first and second word lines in a second horizontal direction, a second bit line extending between the second and third word lines in the second horizontal direction, and memory cells respectively arranged between the first word line and the first bit line, between the first bit line and the second word line, between the second word line and the second bit line, and between the second bit line and the third word line. A thickness of the second word line is greater than a thickness of each of the first word line and the third word line.
Abstract:
A variable resistance memory device includes: a substrate including a peripheral region and a core region, the core region including a far region spaced apart from the peripheral region and a near region between the far region and the peripheral region; first conductive lines disposed on the substrate and extending in a first direction; second conductive lines disposed on the first conductive lines and extending in a second direction intersecting the first direction, and memory cells disposed between the first and second conductive lines on the core region. The memory cells include a near memory cell disposed on the near region, and a far memory cell disposed on the far region, wherein a resistance or threshold voltage of the near memory cell, controlling connection of each of the memory cells to a corresponding one of the second conductive lines, is different from that of the far memory cell.
Abstract:
A memory cell pillar of a memory device includes a heating electrode having a base portion (leg) and a fin portion (ascender), and a selection device between a first conductive line and the heating electrode. A side surface of the selection device and a side surface of the fin portion extend along a first straight line. A method of fabricating a memory device includes forming a plurality of first insulating walls through a stack structure including a preliminary selection device layer and a preliminary electrode layer, forming a plurality of self-aligned preliminary heating electrode layers, forming a plurality of second insulating walls each between two of the plurality of first insulating walls, and forming a plurality of third insulating walls in a plurality of holes extending along a direction intersecting the plurality of first insulating walls.
Abstract:
A memory cell pillar of a memory device includes a heating electrode having a base portion (leg) and a fin portion (ascender), and a selection device between a first conductive line and the heating electrode. A side surface of the selection device and a side surface of the fin portion extend along a first straight line. A method of fabricating a memory device includes forming a plurality of first insulating walls through a stack structure including a preliminary selection device layer and a preliminary electrode layer, forming a plurality of self-aligned preliminary heating electrode layers, forming a plurality of second insulating walls each between two of the plurality of first insulating walls, and forming a plurality of third insulating walls in a plurality of holes extending along a direction intersecting the plurality of first insulating walls.
Abstract:
A semiconductor device includes a first word line and a second word line extending abreast of each other in a first direction. A bit line extends between the first word line and the second word line in a second direction intersecting the first direction. A lower electrode is formed on one surface of the first word line. An ovonic threshold switch (OTS) is formed on the lower electrode. An intermediate electrode is formed on the OTS. A phase change memory (PCM) is formed on the intermediate electrode, and an upper electrode is formed between the first PCM and a surface of the bit line. The width of the first upper electrode in the second direction is narrower than the width of the first intermediate electrode in the second direction.
Abstract:
A semiconductor memory device includes pillars extending upright on a substrate in a direction perpendicular to the substrate, a stack disposed on the substrate and constituted by a first interlayer insulating layer, a first conductive layer, a second interlayer insulating layer, and a second conductive layer, a variable resistance layer interposed between the pillars and the first conductive layer, and an insulating layer interposed between the first pillars and the second conductive layer.