Abstract:
The disclosure relates to a thermoplastic blend comprising a polycarbonate, an inorganic filler, an impact modifier, and a heat stabilizer; and wherein a molded specimen of the thermoplastic blend exhibits an improved bonding strength, high melt flow rate, and high impact strength.
Abstract:
A thermoplastic composition includes from about 50 wt. % to about 90 wt. % of a polymeric base resin and from about 10 wt. % to about 50 wt. % of a low dielectric constant (Dk)/low dissipation factor (Df) glass fiber component. The low Dk/low Df glass fiber component has a Dk of less than about 5.0 at a frequency of from 1 MHz to 1 GHz and a Df of less than about 0.002 at a frequency of from 1 MHz to 1 GHz. In certain aspects the thermoplastic composition has a Dk that is at least about 0.1 lower than a substantially identical reference composition that does not include the low Dk/low Df glass fiber component.
Abstract:
A thermoplastic composition includes a polymeric base resin, a glass fiber component, and a laser direct structuring additive. The laser direct structuring additive includes copper chromite black, copper hydroxide phosphate, tin-antimony cassiterite grey or a combination thereof. In some aspects the polymeric base resin includes polybutylene terephthalate (PBT), polyamide (PA), polycarbonate (PC), poly(p-phenylene oxide) (PPO), or combinations thereof. In certain aspects the thermoplastic composition has a nano molding technology (NMT) bonding strength of at least about 20 MPa when bonded to aluminum alloy. In further aspects the thermoplastic composition includes a plating index of at least a about 0.25. The disclosed thermoplastic compositions can be used to form articles such as NMT bonded covers of consumer electronics devices.
Abstract:
Disclosed herein are blended thermoplastic compositions and methods relating to the same. In an aspect, a composition can comprise from about 20 wt % to about 90 wt % of a polybutylene terephthalate component; a second component comprising one or more of: from greater than about 0 wt % to about 40 wt % of a polyester component, from greater than about 0 wt % to about 30 wt % of a resorcinol-based aryl polyester component having greater than or equal to 40 mole % of its moieties derived from resorcinol, from greater than about 0 wt % to about 30 wt % of a polyetherimide component, and from greater than about 0 wt % to about 30 wt % of a polycarbonate component; from about 10 wt % to about 60 wt % of a filler component.