Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
Articles having improved flame retardance and chemical resistance properties can be made from blends containing a cross-linkable polycarbonate resin having repeating units derived from a dihydroxybenzophenone. Predictive equations can be used to relate properties of the blend and the polycarbonate resin to the fmal properties of the article, and permit design of articles with desired combinations of properties.
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
Articles having improved flame retardance and chemical resistance properties can be made from blends containing a cross-linkable polycarbonate resin having repeating units derived from a dihydroxybenzophenone. Predictive equations can be used to relate properties of the blend and the polycarbonate resin to the final properties of the article, and permit design of articles with desired combinations of properties.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
Polymeric compositions having improved mechanical properties are disclosed. The compositions comprise a cross-linkable polycarbonate resin having a photoactive group derived from a benzophenone, and a reinforcing filler. The composition contains from about 1 wt % to about 70 wt % of the reinforcing filler, which is most desirably in the form of glass fibers. Articles formed from the compositions have improved flexural modulus, flame resistance, and chemical resistance.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
Disclosed herein are polycarbonate fibers and fibrous substrates, such as papers, containing such fibers. The polycarbonate fibers are produced from a polymeric composition comprising a cross-linkable polycarbonate containing endgroups derived from a monofunctional benzophenone or containing repeating units derived from a difunctional benzophenone. The polycarbonate fibers can be combined with other fibers to form the fibrous substrate. Upon exposure to ultraviolet light, crosslinking of the polycarbonate fibers will occur, improving various properties of the fibrous substrate.
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive that is a cross-linkable polycarbonate resin containing a photoactive group derived from a dihydroxybenzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
Crosslinkable polycarbonate resins having improved properties are disclosed. The crosslinkable polycarbonate resins are formed from a reaction of at least a benzophenone, a first dihydroxy chain extender, and a carbonate precursor, and may include a second dihydroxy chain extender as well.