Abstract:
A single integrated wafer package includes a micro electromechanical system (MEMS) wafer, an active device wafer, and a seal ring. The MEMS wafer has a first surface and includes at least one MEMS component on its first surface. The active device wafer has a first surface and includes an active device circuit on its first surface. The seal ring is adjacent the first surface of the MEMS wafer such that a seal is formed about the MEMS component. An external contact is provided on the wafer package. The external contact is accessible externally to the wafer package and is electrically coupled to the active device circuit of the active device wafer.
Abstract:
A single integrated wafer package includes a micro-electro mechanical system (MEMS) wafer, an active device wafer, and a seal ring. The MEMS wafer has a first surface and includes at least one MEMS component on its first surface. The active device wafer has a first surface and includes an active device circuit on its first surface. The seal ring is adjacent the first surface of the MEMS wafer such that a seal is formed about the MEMS component. An external contact is provided on the wafer package. The external contact is accessible externally to the wafer package and is electrically coupled to the MEMS device or active device circuit of the active device wafer.
Abstract:
A semiconductor integrated circuit structure and method for fabricating. The semiconductor integrated circuit structure includes a light sensitive device integral with a semiconductor substrate, a cover dielectric layer disposed over the light sensitive device, and a lens-formation dielectric layer disposed over the cover dielectric layer. Light is transmittable though the cover dielectric layer; and through the lens-formation dielectric layer. The lens-formation dielectric layer forms an embedded convex microlens. The microlens directs light onto the light sensitive device.
Abstract:
An electrostatic discharge (ESD) protection circuit for integrated circuitry having a switching ground bus for isolating switching noise includes an ESD protection bus. A first transistor pair includes a PNP transistor and an NPN transistor, with each of the transistors having an emitter connected to a signal input/output pad. A second transistor pair has a PNP transistor and an NPN transistor having emitters connected to the switching ground bus. For each of the PNP transistors, the base is connected to the ESD protection bus and the collector is connected to a "clean" ground bus. For each of the NPN transistors, a base is connected to the clean ground bus and a collector is connected to the ESD protection bus. In this configuration, the PNP of one transistor pair and the NPN of the other transistor pair are able to operate as a distributed silicon controlled rectifier to protect a drive transistor during an ESD event. Optionally, a switching V.sub.DD bus may also be incorporated and a third transistor pair having emitters coupled to the switching V.sub.DD bus may be employed.
Abstract:
A tiered integrated circuit (IC) assembly includes stacks of a limited number of ICs coupled to each other and arranged in a first direction across a base tier and a second tier. The base tier includes ICs and a data bridge. Each of the ICs includes a respective array of through silicon vias (TSVs) arranged in parallel with the first direction. The data bridge includes submicron metal interconnects (densely spaced electrical conductors) arranged in a plane that is substantially orthogonal to the first direction. The second tier is adjacent to the base tier and includes respective high-performance ICs different from the ICs of the base tier. The TSVs provide power and ground paths to the ICs in the second tier. In an example embodiment, the ICs in the second tier support one or more data bridges for connecting adjacent stacks.
Abstract:
A semiconductor integrated circuit structure and method for fabricating. The semiconductor integrated circuit structure includes a light sensitive device integral with a semiconductor substrate, a cover dielectric layer disposed over the light sensitive device, and a lens-formation dielectric layer disposed over the cover dielectric layer. Light is transmittable through the cover dielectric layer; and through the lens-formation dielectric layer. The lens-formation dielectric layer forms an embedded convex microlens. The microlens directs light onto the light sensitive device.
Abstract:
A method for forming a transistor that includes forming an intrinsic base on a substrate using nonselective epitaxy and forming a raised extrinsic base on the intrinsic base. The nonselective epitaxy used to form the intrinsic base avoids the costly, complex, and defect prone process of selective epitaxy while the raised extrinsic base avoids the high resistance, high noise, low gain, and base contact problems found in prior transistors having thin base regions.
Abstract:
A tiered integrated circuit (IC) assembly includes stacks of a limited number of ICs coupled to each other and arranged in a first direction across a base tier and a second tier. The base tier includes ICs and a data bridge. Each of the ICs includes a respective array of through silicon vias (TSVs) arranged in parallel with the first direction. The data bridge includes submicron metal interconnects (densely spaced electrical conductors) arranged in a plane that is substantially orthogonal to the first direction. The second tier is adjacent to the base tier and includes respective high-performance ICs different from the ICs of the base tier. The TSVs provide power and ground paths to the ICs in the second tier. In an example embodiment, the ICs in the second tier support one or more data bridges for connecting adjacent stacks.
Abstract:
A vertical tri-color sensor having vertically stacked blue, green, and red pixels detects at least blue and green components of incident light by converting the blue and green components to surface plasmons.
Abstract:
Monolithic devices that include an acoustic resonator vertically integrated with electronic circuitry are described. In one aspect, a monolithic integrated device includes a substrate, electronic circuitry supported by the substrate, an acoustic isolator over the electronic circuitry, and an acoustic resonator on the acoustic isolator. A method of fabricating the monolithic device also is described.