摘要:
The polishing pad is suitable for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates. The polishing pad includes a polishing layer having a polymeric matrix and radial feeder grooves in the polishing layer separating the polishing layer into polishing regions. The radial feeder grooves extend at least from a location adjacent the center to a location adjacent the outer edge of the polishing pad. Each polishing region includes a series of spaced non-isosceles trapezoid groove structures having parallel base segments connecting two adjacent radial feeder grooves to form leg segments. The series of non-isosceles trapezoid groove structures extend from adjacent the outer edge toward the center of the polishing pad with the perimeter of the series of trapezoid structures also being a trapezoid.
摘要:
The present invention provides a chemical mechanical (CMP) polishing pad with a top surface, one or more apertures adapted to receive an endpoint detection window, an underside having a recessed portion and having one or more flanged endpoint detection windows (windows), each window having a flange adapted to fit snugly into the recessed portion of the underside of the polishing layer, the flange having a thickness slightly less than the depth of the recessed portion of the polishing layer (to allow for adhesive), having a detection area that fits snugly into an aperture in the polishing layer so that its top surface that lies substantially flush with the top surface of the polishing layer.
摘要:
The present invention provides a chemical mechanical (CMP) polishing pad with a top surface, one or more apertures adapted to receive an endpoint detection window, an underside having a recessed portion and having one or more flanged endpoint detection windows (windows), each window having a flange adapted to fit snugly into the recessed portion of the underside of the polishing layer, the flange having a thickness slightly less than the depth of the recessed portion of the polishing layer (to allow for adhesive), having a detection area that fits snugly into an aperture in the polishing layer so that its top surface that lies substantially flush with the top surface of the polishing layer.
摘要:
The present invention provides apparati for pre-conditioning polymeric, preferably, porous polymeric, chemical mechanical (CMP) polishing pads or layers and polishing a substrate that comprise a rotary grinder assembly having a rotor with a grinding surface of a porous abrasive material, a flat bed platen for holding the CMP polishing pad or layer in place so that the grinding surface of the rotary grinder is disposed above and parallel to the surface of the flat bed platen to form an interface of the surface of the CMP polishing layer and the porous abrasive material, and a substrate holder located above and parallel to a top surface of the flat bed platen and to which a CMP substrate is attached, thereby creating a polishing interface between the surface of the substrate and the CMP polishing layer wherein the substrate holder rotates independently from the rotary grinder assembly and the flat bed platen.
摘要:
The present invention provides methods for making a pre-conditioned chemical mechanical (CMP) polishing pad having a pad surface microtexture effective for polishing comprising grinding the surface of the CMP polishing pad having a radius with a rotary grinder while it is held in place on a flat bed platen surface, the rotary grinder having a grinding surface disposed parallel to or substantially parallel to the surface of the flat bed platen and made of a porous abrasive material, wherein the resulting CMP polishing pad has a surface roughness of from 0.01 μm to 25 μm, Sq. The present invention also provides a CMP polishing pad having a series of visibly intersecting arcs on the polishing layer surface, the intersecting arcs having a radius of curvature equal to or greater than half of the radius of curvature of the pad and extending all the way around the surface of the pad in radial symmetry around the center point of the pad.
摘要:
The invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates. The method includes rotating a polishing pad, the rotating polishing pad having radial feeder grooves in the polishing layer separating the polishing layer into polishing regions. The polishing regions are circular sectors defined by two adjacent radial feeder grooves. The radial feeder grooves extend from a location adjacent the center to a location adjacent the outer edge. Each polishing region includes a series of biased grooves connecting a pair of adjacent radial feeder grooves. Pressing and rotating the wafer against the rotating polishing pad for multiple rotations of the polishing pad adjusts polishing by either increasing or decreasing residence time of the polishing fluid under the wafer.
摘要:
A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 5 to 1,000 m/sec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
摘要:
A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of periodic recesses; wherein the plurality of periodic recesses are occupied with the second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ≦6 vol %; wherein the second non-fugitive polymeric phase contains an open cell porosity of ≧10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
摘要:
A multilayer chemical mechanical polishing pad stack is provided containing: a polishing layer; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 μm/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate.
摘要:
The invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates. The method includes rotating a polishing pad having radial feeder grooves in the polishing layer separating the polishing layer into polishing regions. The radial feeder grooves include a series of biased grooves connecting a pair of adjacent radial feeder grooves. A majority of the biased grooves have either an inward bias toward the center or an outward bias toward the outer edge of the polishing pad. Pressing and rotating the wafer against the rotating polishing pad for multiple rotations of the polishing pad at a fixed distance from the center of the polishing pad increases polishing or planarizing removal rate of the wafer.