Abstract:
A synthetic antiferromagnetic (SAF) structure for a spintronic device is disclosed and has an AP2/antiferromagnetic (AF) coupling/CoFeB configuration. The SAF structure is thinned to reduce the fringing (Ho) field while maintaining high coercivity. The AP2 reference layer has intrinsic perpendicular magnetic anisotropy (PMA) and induces PMA in a thin CoFeB layer through AF coupling. In one embodiment, AF coupling is improved by inserting a Co dusting layer on top and bottom surfaces of a Ru AF coupling layer. When AP2 is (Co/Ni)4, and CoFeB thickness is 7.5 Angstroms, Ho is reduced to 125 Oe, Hc is 1000 Oe, and a balanced saturation magnetization-thickness product (Mst)=0.99 is achieved. The SAF structure may also be represented as FL2/AF coupling/CoFeB where FL2 is a ferromagnetic layer with intrinsic PMA.
Abstract:
A synthetic antiferromagnetic (SAF) structure for a spintronic device is disclosed and has an AP2/antiferromagnetic (AF) coupling/CoFeB configuration. The SAF structure is thinned to reduce the fringing (Ho) field while maintaining high coercivity. The AP2 reference layer has intrinsic perpendicular magnetic anisotropy (PMA) and induces PMA in a thin CoFeB layer through AF coupling. In one embodiment, AF coupling is improved by inserting a Co dusting layer on top and bottom surfaces of a Ru AF coupling layer. When AP2 is (Co/Ni)4, and CoFeB thickness is 7.5 Angstroms, Ho is reduced to 125 Oe, Hc is 1000 Oe, and a balanced saturation magnetization-thickness product (Mst)=0.99 is achieved. The SAF structure may also be represented as FL2/AF coupling/CoFeB where FL2 is a ferromagnetic layer with intrinsic PMA.
Abstract:
An STT MTJ cell is formed with a magnetic anisotropy of its free and reference layers that is perpendicular to their planes of formation. The reference layer of the cell is an SAF multilayered structure with a single magnetic domain to enhance the bi-stability of the magnetoresistive states of the cell. The free layer of the cell is etched back laterally from the reference layer, so that the fringing stray field of the reference layer is no more than 15% of the coercivity of the free layer and has minimal effect on the free layer.
Abstract:
An STT MTJ cell is formed with a magnetic anisotropy of its free and reference layers that is perpendicular to their planes of formation. The reference layer of the cell is an SAF multilayered structure with a single magnetic domain to enhance the bi-stability of the magnetoresistive states of the cell. The free layer of the cell is etched back laterally from the reference layer, so that the fringing stray field of the reference layer is no more than 15% of the coercivity of the free layer and has minimal effect on the free layer.
Abstract:
A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by a NOX process, a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0, and a Ru capping layer to enhance the spin scattering effect and increase dR/R. Good write margin is achieved by modifying the NOX process to afford a RA less than 10 ohm-μm2 and good read margin is realized with a dR/R of >100% by annealing at 330° C. or higher to form crystalline CoFeB free layers. The NCC thickness is maintained in the 6 to 10 Angstrom range to reduce Rp and avoid Fe(Si) granules from not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A FeSiO layer may be inserted below the Ru layer in the capping layer to prevent the Ru from causing a high damping constant in the upper CoFeB free layer.
Abstract:
A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by a NOX process, a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0, and a Ru capping layer to enhance the spin scattering effect and increase dR/R. Good write margin is achieved by modifying the NOX process to afford a RA less than 10 ohm-μm2 and good read margin is realized with a dR/R of >100% by annealing at 330° C. or higher to form crystalline CoFeB free layers. The NCC thickness is maintained in the 6 to 10 Angstrom range to reduce Rp and avoid Fe(Si) granules from not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A FeSiO layer may be inserted below the Ru layer in the capping layer to prevent the Ru from causing a high damping constant in the upper CoFeB free layer.
Abstract:
A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
Abstract:
A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
Abstract:
A self-aligned transistor gate structure that includes an ion-implanted portion of gate material surrounded by non-implanted gate material on each side. The gate structure may be formed, for example, by applying a layer of GaN material over an AlGaN barrier layer and implanting a portion of the GaN layer to create the gate structure that is laterally surrounded by the GaN layer.
Abstract:
A wireless local area network is provided with simplified RF ports which are configured to provide lower level media access control functions. Higher level media access control functions and management functions are provided with a system having a cell controller, which may service one or more RF ports. Mobile units can also be configured with the higher level media access control functions being performed in a host processor.