Abstract:
A multi-layer microwave corrugated printed circuit board is provided. In one embodiment, an interconnect assembly includes a first flat flexible layer having a signal conductor and a ground conductor forming a first microstripline or microstrip transmission line, a second folded flexible layer having a signal conductor and a ground conductor forming a second microstripline or microstrip transmission line, the bottom surface of the second folded flexible layer having ridge portions, a non-conductive adhesive layer disposed between the top surface of the first flat flexible layer and the ridge portions of the second folded flexible layer, a signal through-hole extending through the non-conductive adhesive layer and the first flat flexible layer, and two ground through-holes extending through the non-conductive adhesive layer and the second folded flexible layer, wherein the two ground through-holes are disposed on opposite sides of the signal through-hole.
Abstract:
A multi-layer microwave corrugated printed circuit board is provided. In one embodiment, an interconnect assembly includes a first flat flexible layer having a signal conductor and a ground conductor forming a first microstripline or microstrip transmission line, a second folded flexible layer having a signal conductor and a ground conductor forming a second microstripline or microstrip transmission line, the bottom surface of the second folded flexible layer having ridge portions, a non-conductive adhesive layer disposed between the top surface of the first flat flexible layer and the ridge portions of the second folded flexible layer, a signal through-hole extending through the non-conductive adhesive layer and the first flat flexible layer, and two ground through-holes extending through the non-conductive adhesive layer and the second folded flexible layer, wherein the two ground through-holes are disposed on opposite sides of the signal through-hole.
Abstract:
In one aspect, an active electronically scanned array (AESA) tile includes a radiator structure and oxide-bonded semiconductor wafers attached to the radiator structure and comprising a radio frequency (RF) manifold and a beam former. An RF signal path through the oxide-bonded wafers comprises a first portion that propagates toward the beam former and a second portion that propagates parallel to the beam former.
Abstract:
A module. In some embodiments, the module includes a substrate; a plurality of electronic components, secured to an upper surface of the substrate; a thermally conductive heat spreader, on the electronic components and in thermal contact with an electronic component of the plurality of electronic components; a standoff, between the substrate and the heat spreader; an alignment element, extending into the substrate; a hard stop, under the substrate; and a plurality of compressible interconnects, under the substrate, and extending through the hard stop. The electronic components may be within a sight area of the substrate. The module may be configured to transmit a compressive load from an upper surface of the standoff to a lower surface of the substrate through a load path not including any of the electronic components.
Abstract:
A module. In some embodiments, the module includes a substrate; a plurality of electronic components, secured to an upper surface of the substrate; a thermally conductive heat spreader, on the electronic components and in thermal contact with an electronic component of the plurality of electronic components; a standoff, between the substrate and the heat spreader; an alignment element, extending into the substrate; a hard stop, under the substrate; and a plurality of compressible interconnects, under the substrate, and extending through the hard stop. The electronic components may be within a sight area of the substrate. The module may be configured to transmit a compressive load from an upper surface of the standoff to a lower surface of the substrate through a load path not including any of the electronic components.
Abstract:
In one aspect, an active electronically scanned array (AESA) tile includes a radiator structure and oxide-bonded semiconductor wafers attached to the radiator structure and comprising a radio frequency (RF) manifold and a beam former. An RF signal path through the oxide-bonded wafers comprises a first portion that propagates toward the beam former and a second portion that propagates parallel to the beam former.