Abstract:
A device includes a first and a second low noise amplifier (LNA), a first degenerative inductance coupled between the first LNA and ground by a first ground connection, and a second degenerative inductance coupled between the second LNA and ground by a second ground connection, the first and second degenerative inductances configured to establish negative inductive coupling between the first and second degenerative inductances.
Abstract:
Certain aspects of the present disclosure provide an inductor-enclosed switchable voltage-controlled oscillator (VCO), for use in a frequency synthesizer of a radio frequency integrated circuit (RFIC), for example. One example apparatus is a frequency synthesizer that generally includes a first VCO circuit comprising a first inductor and a second VCO circuit comprising a second inductor, wherein at least a portion of the first VCO circuit is disposed inside a loop of the second inductor. According to certain aspects, at least a portion of the second VCO circuit is disposed inside a loop of the first inductor.
Abstract:
An integrated circuit includes a capacitor (e.g., a folded metal-oxide-metal (MOM) capacitor) formed in the lower BEOL interconnect levels, without degrading an inductor's Q-factor. The integrated circuit includes the capacitor in one or more back-end-of-line (BEOL) interconnect levels. The capacitor includes multiple folded capacitor fingers having multiple sides and a pair of manifolds on a same side of the folded capacitor fingers. Each of the pair of manifolds is coupled to one or more of the folded capacitor fingers. The integrated circuit also includes an inductive trace having one or more turns in one or more different BEOL interconnect levels. The inductive trace overlaps one or more portions of the capacitor.
Abstract:
Amplifiers with configurable mutually-coupled source degeneration inductors are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes a gain transistor and a plurality of inductors, which may implement an amplifier. The gain transistor receives an input signal and provides an amplified signal. The plurality of inductors are mutually coupled, are coupled to the gain transistor, and provide a programmable source degeneration inductance for the gain transistor. The inductors may have a positive coupling coefficient and may provide a larger source degeneration inductance. Alternatively, the inductors may have a negative coupling coefficient and may provide a smaller source degeneration inductance.
Abstract:
A tunable guard ring for improved circuit isolation is disclosed. In an exemplary embodiment, an apparatus includes a closed loop guard ring formed on an integrated circuit and magnetically coupled by a selected coupling factor to a first inductor formed on the integrated circuit. The apparatus also includes a tunable capacitor forming a portion of the closed loop guard ring and configured to reduce magnetic field coupling from the first inductor to a second inductor.
Abstract:
Amplifiers with configurable mutually-coupled source degeneration inductors are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes a gain transistor and a plurality of inductors, which may implement an amplifier. The gain transistor receives an input signal and provides an amplified signal. The plurality of inductors are mutually coupled, are coupled to the gain transistor, and provide a programmable source degeneration inductance for the gain transistor. The inductors may have a positive coupling coefficient and may provide a larger source degeneration inductance. Alternatively, the inductors may have a negative coupling coefficient and may provide a smaller source degeneration inductance.
Abstract:
Certain aspects of the present disclosure provide a directional coupler. In certain aspects, the directional coupler generally includes a first inductor and a second inductor wirelessly coupled to the first inductor. In certain aspects, the directional coupler generally includes an input port at a first terminal of the first inductor and a transmitted port at a second terminal of the first inductor. In certain aspects, the directional coupler generally includes a coupled port at a first terminal of the second inductor and an isolated port at a second terminal of the second inductor. In certain aspects, the directional coupler generally includes a first complex impedance component directly coupled to the isolated port and a second complex impedance component directly coupled to the coupled port.
Abstract:
Various aspects described herein relate to low-loss multi-band multiplexing schemes for a wireless communications system, for example, a 5th Generation (5G) New Radio (NR) system. In an aspect, a multiplexer for multi-band wireless communications comprises at least one tuning component configured to transmit or receive at least one signal within a frequency band that is selected from a plurality of frequency bands. The multiplexer further comprises at least one combining component, communicatively coupled with the at least one tuning component, configured to transmit or receive the at least one signal within the selected frequency band. In an aspect, the at least one tuning component is integrated on a chip and the at least one combining component is not integrated on the chip.
Abstract:
A coplanar waveguide may include a first transmission line extending between a first ground plane and a second ground plane at a first interconnect level. The coplanar waveguide may further include a shielding layer at a second interconnect level. The shielding layer may include a first set of conductive fingers coupled to the first ground plane. The first set of conductive fingers may be interdigitated with a second set of conductive fingers that are coupled to the second ground plane. Only a dielectric layer may be between the first set of conductive interdigitated fingers and the second set of conductive interdigitated fingers. The first ground plane, the second ground plane, the dielectric layer, and the shielding layer may form a capacitor.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus employing an isolation ring having a center strip of conductive material used to isolate magnetic fields generated by common-mode and differential-mode current flow through one or more inductors disposed in the ring. The apparatus generally includes an electrical component having an inductive element and a ring of electrically conductive material encircling the inductive element, wherein the ring has a strip of electrically conductive material disposed in the ring and connecting a first point on the ring to a second point on the ring.