Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for improving decoding latency and performance of Polar codes. An exemplary method generally includes generating a codeword by encoding information bits, using a multi-dimensional interpretation of a polar code of length N, determining, based on one or more criteria, a plurality of locations within the codeword to insert error correction codes generating the error correction codes based on corresponding portions of the information bits, inserting the error correction codes at the determined plurality of locations, and transmitting the codeword. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Certain aspects of the present disclosure provide low-density parity-check (LDPC) codes having pairwise orthogonality of adjacent rows, and a new decoder that exploits the pairwise row orthogonality for flexible decoder scheduling without performance loss. An apparatus includes a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver. The apparatus includes at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a LDPC code to produce a set of information bits. The LDPC code is stored in the memory and defined by a base matrix having columns in which all adjacent rows are orthogonal in a last portion of the rows.
Abstract:
Methods and apparatus supporting peer to peer communications are discussed. A base station, serving as an access node for wireless terminals also communicates information supporting peer to peer communications. A base station transmits a beacon signal conveying information about a peer to peer frequency band and also receives user data from a plurality of wireless terminals, using the base station as a current point of network attachment. In some embodiments, the beacon signal is transmitted into the same frequency band being used for access node based communications and identifies a different frequency band which is to be used as a peer to peer frequency band. Alternatively, or in addition, in support of peer to peer communications, a beacon signal transmission apparatus, a free standing device which doesn't transmit user data, transmits a sequence of beacon signal bursts, each beacon signal burst including at least one high power beacon symbol.
Abstract:
Aspects of the present disclosure relate to low density parity check (LDPC) coding utilizing LDPC base graphs. Two or more LDPC base graphs may be maintained that are associated with different ranges of overlapping information block lengths. A particular LDPC base graph may be selected for an information block based on the information block length of the information block. Additional metrics that may be considered when selecting the LDPC base graph may include the code rate utilized to encode the information block and/or the lift size applied to each LDPC base graph to produce the information block length of the information block.
Abstract:
A method, a computer program product, and an apparatus are provided. In one configuration, the apparatus transmits a first broadcast signal including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus transmits a second broadcast signal in the unicast resource. In another configuration, the apparatus, which is a first wireless device, receives a first broadcast signal from a second wireless device including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus receives a first scheduling signal from the second wireless device in a scheduling resource. The first scheduling signal is for indicating a second intention to use the unicast resource for transmitting a second broadcast signal. Furthermore, the apparatus refrains from transmitting a second scheduling signal in the scheduling resource in response to the first scheduling signal.
Abstract:
Methods and apparatus related to peer to peer communication networks are described. Embodiments directed to methods and apparatus for establishing traffic data transmission rates and/or transmission power levels between wireless terminals is described. Embodiments direct to methods and apparatus of making decisions whether or not to transmit as a function of the received power of the received response signals are also described. Transmission of pilot signals after granting of a transmission request and a decision to transmit traffic data has been made occurs in some embodiments. Rate information to be used in determining a traffic rate may be received in response to the pilot signal from a peer to peer (P2P) device.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for decoding low-density parity check (LDPC) codes, for example, using a parity check matrix having full row-orthogonality. An exemplary method for performing low-density parity-check (LDPC) decoding includes receiving soft bits associated to an LDPC codeword and performing LDPC decoding of the soft bits using a parity check matrix, wherein each row of the parity check matrix corresponds to a lifted parity check of a lifted LDPC code, at least two columns of the parity check matrix correspond to punctured variable nodes of the lifted LDPC code, and the parity check matrix has row orthogonality between each pair of consecutive rows that are below a row to which the at least two punctured variable nodes are both connected.
Abstract:
Various aspects described herein relate to techniques for rate matching and interleaving in wireless communications (e.g., 5G NR). In an example, a method described herein includes encoding one or more information bits to generate a first codeblock, rate matching the first codeblock to generate a second codeblock, segmenting, using bit distribution, the second codeblock into one or more sub-blocks each having a plurality of bits. The method further includes interleaving the plurality of bits on each of the one or more sub-blocks, concatenating, using bit collection, the one or more sub-blocks to generate a third codeblock in response to the interleaving, and transmitting a signal using the third codeblock.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for decoding low-density parity check (LDPC) codes, for example, using a parity check matrix having full row-orthogonality. An exemplary method for performing low-density parity-check (LDPC) decoding includes receiving soft bits associated to an LDPC codeword and performing LDPC decoding of the soft bits using a parity check matrix, wherein each row of the parity check matrix corresponds to a lifted parity check of a lifted LDPC code, at least two columns of the parity check matrix correspond to punctured variable nodes of the lifted LDPC code, and the parity check matrix has row orthogonality between each pair of consecutive rows that are below a row to which the at least two punctured variable nodes are both connected.
Abstract:
Various aspects described herein relate to techniques for rate matching and interleaving in wireless communications (e.g., 5G NR). In an example, a method described herein includes encoding one or more information bits to generate a first codeblock, rate matching the first codeblock to generate a second codeblock, segmenting, using bit distribution, the second codeblock into one or more sub-blocks each having a plurality of bits. The method further includes interleaving the plurality of bits on each of the one or more sub-blocks, concatenating, using bit collection, the one or more sub-blocks to generate a third codeblock in response to the interleaving, and transmitting a signal using the third codeblock.