Abstract:
Aspects described herein include devices and methods for smart ultra wideband transmissions. In one aspect, an apparatus includes pulse generation circuitry configured to output a plurality of transmission (TX) pulse samples at a selected signal sample rate, where each pulse sample of the plurality of TX pulse samples comprises a value associated with a pulse amplitude at a corresponding sample time The apparatus includes a plurality of power amplifier (PA) cells, with each PA cell of the plurality of PA cells comprising a corresponding current source and associated gates, and where the associated gates of a PA cell are selectable to configure an on state and an off state. Logic circuitry of the apparatus is configured to set the on state or the off state for each PA cell.
Abstract:
Systems and methods are directed to low cost and low power carrier frequency offset (CFO) estimation in a receiver. In-phase (I) and quadrature (Q) samples of a wireless signal are received by the receiver and a first phase and a second phase are extracted from the outputs of a first autocorrelator with a first time-lag and a second autocorrelator with a second time-lag. The extracted first and second phases are combined to generate an estimated CFO of high accuracy and wide estimation range.
Abstract:
Methods and systems for hardware-efficient carrier sensing are disclosed. The method may include receiving a received signal during a detection window, generating a phase-discriminated waveform based on the received signal, determining a plurality of absolute values respectively based on a plurality of correlations of the phase-discriminated waveform, and generating a detection metric based on a peak value of the plurality of absolute values.
Abstract:
Aspects disclosed herein relate to improving acquisition for NFC load modulation. In one example, a communications device is equipped to monitor at least a complex component of load modulation of a carrier signal, detect, using a NFC technology type specific peak detection scheme, a peak associated with at least the complex component, and determine a presence of a packet beginning pattern based on the detected peak. In an aspect, the packet beginning pattern may be associated with a reception of a packet from a target NFC device.
Abstract:
The present systems and methods may shape signals to meet emission mask requirements, current consumption requirements, and overshoot/undershoot requirements relating to the interaction that, for example, occurs when a near field communications (NFC) target comes within range of an NFC initiator, and the initiator generates and transmits an NFC waveform. In some implementations, a pair of bit patterns are defined whose differential output from an amplifier is a shaped pulse width modulated waveform. Varying individual bits of the bit patterns can vary the shaped pulse waveform with predictability. The pulse width modulated waveform may be filtered using a matching network that reduces higher order harmonics, thereby reducing out-of-band emissions.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first wireless communication device may transmit, to a second wireless communication device, a time and/or frequency synchronization message using a first radio frequency (RF) technology, wherein the time and/or frequency synchronization message is used to obtain synchronization information for a second RF technology. The first wireless communication device may transmit, to the second wireless communication device, a first set of ranging measurement signals associated with the second RF technology. The first wireless communication device may receive, from the second wireless communication device, a second set of ranging measurement signals associated with the second RF technology. Numerous other aspects are described.
Abstract:
A device (e.g., a wireless device) may obtain a set of encoded bits, and select a set of symbol locations for puncturing. The device may then obtain and transmit modulated symbols based on the puncturing. For example, the device may encode information bits according to a convolutional code rate. In some cases, the encoded bits may be punctured (e.g., via a puncturing matrix with each column including either all 1's or all 0's) and the set of punctured bits may be mapped to symbols. In other cases, the encoded bits may be mapped to symbols, and the symbols may be punctured (e.g., via a puncturing matrix). The puncturing matrix may be identified based on a desired punctured code rate, the convolutional code rate used to encode the information bits, and whether or not the puncturing is to be applied before or after symbol mapping.
Abstract:
Systems and methods are directed to phase modulation of polar coordinates in a transmitter of wireless signals, to achieve high transmit power levels while meeting spectral mask and EVM requirements. An input signal is mapped to a sequence of modulation frequency (e.g., O-QPSK to MSK) to generate a mapped signal. A digital frequency shaping filter is applied to the mapped signal to generate a shaped signal. An adaptive rounding algorithm is applied to the shaped signal to generate a reduced bit-width signal. A digital frequency synthesizer is applied to the reduced bit-width signal to generate an analog waveform for transmission.
Abstract:
Aspects disclosed herein relate to improving acquisition for NFC load modulation. In one example, a communications device is equipped to monitor at least a complex component of load modulation of a carrier signal, detect, using a NFC technology type specific peak detection scheme, a peak associated with at least the complex component, and determine a presence of a packet beginning pattern based on the detected peak. In an aspect, the packet beginning pattern may be associated with a reception of a packet from a target NFC device.
Abstract:
In a wireless near field communication (NFC) system, a target, such as a smart card, can communicate with an initiator, such as a card reader, by load modulating a radio frequency (RF) signal generated by the initiator. When two or more targets load modulate the RF signal generated, “collisions” can occur with the load modulation. Apparatus and methods detect the presence or absence of collisions in a lower layer or physical layer and report the presence of detected collisions to an upper layer for further handling.