Abstract:
Provided are apparatus and methods for testing an integrated circuit. In an exemplary method for testing an integrated circuit, a test controller and a power manager are integrated into a main power domain of the integrated circuit. The test controller can be Joint Test Action Group-compatible. An isolation signal is generated using the power manager. The isolation signal can comprise at least one of a freeze signal configured to isolate an input-output port of the integrated circuit, and a clamp signal configured to isolate a functional module of the integrated circuit. The isolation signal can be stored in a boundary scan register controlled with the test controller. The main power domain is isolated from a power-collapsible domain of the integrated circuit with the isolation signal. Power of the power-collapsible domain is collapsed. When power is collapsed, the power-collapsible domain is tested using the test controller and the power manager. The testing of the power-collapsible domain can comprise testing a power supply current. When power to the power-collapsible domain is collapsed, a level shifter output can be held constant to an output level based on a pre-collapse input from the power-collapsible domain.
Abstract:
Techniques are provided that may be implemented in a mobile device to provide one or more location parameters to one or more mobile processes (e.g., applications) provided and/or otherwise supported, at least in part, by the mobile device. For example, a mobile device may be configured to monitor one or more processes hosted on a first processor, and initiate a communication on a bus connecting the first processor to a positioning engine external to the first processor to obtain at least one updated location parameter in response to detection of activity of at least one of the one or more processes. In certain instances, the updated location parameter(s) may have been previously determined by the positioning engine.
Abstract:
A method of using user density includes: producing a first map portion corresponding to a first region and a second map portion corresponding to a second region, the first map portion having a first resolution and the second map portion having a second resolution, the first resolution being lower than the second resolution, at least one of the first resolution being dependent on a user density of the first region or the second resolution being dependent on a user density of the second region; and sending the first map portion and the second map portion to a destination mobile device.
Abstract:
Methods, systems, computer-readable media, and apparatuses for position determination are presented. In some embodiments, a method for position determination includes selecting at least one of a plurality of access points based on a measure of response time variability associated with the at least one access point. The method further includes sending, from a device, a communication to the selected at least one access point. The method also includes receiving, from the selected at least one access point, a response to the communication. The method additionally includes calculating a distance from the device to the selected at least one access point based on a round trip time associated with the response to the communication.
Abstract:
Techniques disclosed herein are generally directed toward providing customized location database information regarding terrestrial transceivers to a mobile device (e.g., a semi-connected mobile device) by causing the mobile device to scan for terrestrial transceivers during a first period of time, provide a list of the terrestrial transceivers detected during the first period of time to a location server, and receive location information for terrestrial transceivers on the list. Using this location information, the mobile device can subsequently (e.g., during a second period of time) calculate its position when the terrestrial transceivers are detected.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for delayed adaptive tile download, such as for use in or with a mobile communication device, for example.
Abstract:
Techniques are disclosed for ranking wireless access points using crowdsourced information, and using these rankings to determine a priority of tiles to download to a mobile device. The number of tiles that may be downloaded by a mobile device and/or the number of wireless access points in each tile may be optimized, based on wireless access point rankings and tile priority.
Abstract:
Methods, systems, computer-readable media, and apparatuses for position determination are presented. In some embodiments, a method for position determination includes selecting at least one of a plurality of access points based on a measure of response time variability associated with the at least one access point. The method further includes sending, from a device, a communication to the selected at least one access point. The method also includes receiving, from the selected at least one access point, a response to the communication. The method additionally includes calculating a distance from the device to the selected at least one access point based on a round trip time associated with the response to the communication.
Abstract:
Provided are apparatus and methods for testing an integrated circuit. In an exemplary method for testing an integrated circuit, a test controller and a power manager are integrated into a main power domain of the integrated circuit. The test controller can be Joint Test Action Group-compatible. An isolation signal is generated using the power manager. The isolation signal can comprise at least one of a freeze signal configured to isolate an input-output port of the integrated circuit, and a clamp signal configured to isolate a functional module of the integrated circuit. The isolation signal can be stored in a boundary scan register controlled with the test controller. The main power domain is isolated from a power-collapsible domain of the integrated circuit with the isolation signal. Power of the power-collapsible domain is collapsed. When power is collapsed, the power-collapsible domain is tested using the test controller and the power manager. The testing of the power-collapsible domain can comprise testing a power supply current. When power to the power-collapsible domain is collapsed, a level shifter output can be held constant to an output level based on a pre-collapse input from the power-collapsible domain.
Abstract:
Techniques are provided that may be implemented in a mobile device to provide one or more location parameters to one or more mobile processes (e.g., applications) provided and/or otherwise supported, at least in part, by the mobile device. For example, a mobile device may be configured to monitor one or more processes hosted on a first processor, and initiate a communication on a bus connecting the first processor to a positioning engine external to the first processor to obtain at least one updated location parameter in response to detection of activity of at least one of the one or more processes. In certain instances, the updated location parameter(s) may have been previously determined by the positioning engine.