Abstract:
A device includes a first driver circuit coupled to a first bus line, where the first driver circuit includes a first delay element. The first delay element is configured to receive a first input signal and generate a first output signal. The first output signal transitions logic levels after a first delay period when the first input signal transitions from a logic high level to a logic low level. The first output signal transitions logic levels after a second delay period when the first input signal transitions from the logic low level to the logic high level. The first delay element includes a sense amplifier. The first driver circuit is configured to transmit the first output signal over the first bus line. The device also includes a second driver circuit configured to transmit a second output signal over a second bus line.
Abstract:
In a particular embodiment, a method includes receiving a testing activation signal at a controller coupled to a semiconductor device. The method further includes biasing a well of at least one transistor of the semiconductor device in response to the received testing activation signal. The bias is provided by a biasing circuit that is responsive to the controller. While the well is biased, a test of the semiconductor device is performed to generate testing data.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.
Abstract:
An apparatus includes a sense amplifier that has a sense amplifier differential output. The sense amplifier may be in a first power domain. The apparatus may include level shifting circuitry that has a level shifter differential output. The level shifting circuitry may be coupled to the sense amplifier differential output. The level shifting circuitry may include a first transistor and a second transistor. A first sense amplifier output of the sense amplifier differential output may be coupled to the first transistor, and a second sense amplifier output of the sense amplifier differential output may be coupled to the second transistor. The apparatus may further include a latch to store data. The latch may be coupled to the level shifter differential output. The latch is in a second power domain that is different from the first power domain.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.
Abstract:
A device includes a first driver circuit coupled to a first bus line, where the first driver circuit includes a first delay element. The first delay element is configured to receive a first input signal and generate a first output signal. The first output signal transitions logic levels after a first delay period when the first input signal transitions from a logic high level to a logic low level. The first output signal transitions logic levels after a second delay period when the first input signal transitions from the logic low level to the logic high level. The first delay element includes a sense amplifier. The first driver circuit is configured to transmit the first output signal over the first bus line. The device also includes a second driver circuit configured to transmit a second output signal over a second bus line.
Abstract:
An apparatus includes a sense amplifier that has a sense amplifier differential output. The sense amplifier may be in a first power domain. The apparatus may include level shifting circuitry that has a level shifter differential output. The level shifting circuitry may be coupled to the sense amplifier differential output. The level shifting circuitry may include a first transistor and a second transistor. A first sense amplifier output of the sense amplifier differential output may be coupled to the first transistor, and a second sense amplifier output of the sense amplifier differential output may be coupled to the second transistor. The apparatus may further include a latch to store data. The latch may be coupled to the level shifter differential output. The latch is in a second power domain that is different from the first power domain.
Abstract:
A particular method includes receiving at least one translation lookaside buffer (TLB) configuration indicator. The at least one TLB configuration indicator indicates a specific number of entries to be enabled at a TLB. The method further includes modifying a number of searchable entries of the TLB in response to the at least one TLB configuration indicator.
Abstract:
In a particular embodiment, a method includes receiving a testing activation signal at a controller coupled to a semiconductor device. The method further includes biasing a well of at least one transistor of the semiconductor device in response to the received testing activation signal. The bias is provided by a biasing circuit that is responsive to the controller. While the well is biased, a test of the semiconductor device is performed to generate testing data.