Abstract:
Certain aspects of the present disclosure provide methods and apparatus for using a block acknowledgement (BlockAck) frame capable of acknowledging fragments. One example method for wireless communications generally includes receiving a plurality of protocol data units (PDUs) (e.g., media access control (MAC) protocol data units (MPDUs)); determining whether each of the PDUs was successfully received and whether each of the PDUs is associated with a non-fragmented service data unit (SDU) (e.g., MAC service data unit (MSDU)) or a fragmented SDU; and outputting for transmission a BlockAck frame comprising a bitmap field indicating a receive status for the non-fragmented and fragmented SDUs based on the determination.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a number of data symbols for transmitting a data payload. The apparatus is configured to determine a number of payload bits for transmitting the data payload based on the determined number of data symbols. The apparatus is configured to transmit a data frame. The data frame includes a signal field and data symbols encoded based on the data payload, the determined number of data symbols, and the determined number of payload bits, in which the data symbols are encoded using LDPC encoding or BCC encoding.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In an aspect, an apparatus may be configured to transmit a first frame that includes a delay indicator. The apparatus may be configured to receive a second frame from a station based on the transmitted first frame. The apparatus may be configured to determine when to transmit a third frame based on the received second frame. In this aspect, the delay indicator may indicate whether the access point will delay transmitting the third frame after receiving the second frame during multi-user uplink operation.
Abstract:
A collaborative method for a node includes forming a local network with at least one other node using a lower power subsystem; selecting a master node from among the local network based on a first set of criteria; and communicating with a back end server over a wireless wide area network (WWAN) using a higher power subsystem. An apparatus may include a first subsystem for communicating with a local network; and a second subsystem having an active mode and an inactive mode, the second subsystem for communicating with a wireless wide area network (WWAN) when in the active mode, the apparatus selecting the active mode or inactive mode based on a set of criteria.
Abstract:
The present disclosure provides techniques for configuring the utilization of request-to-send/clear-to-send (RTS/CTS) protocol procedures based on varying conditions at the STA. For example, an AP may identify one or more conditions, when satisfied, may trigger the STA to either enable or disable uplink (UL) transmissions associated with a RTS/CTS protocol procedure. In some aspects, an AP may determine a transmit opportunity (TXOP) threshold for an STA and may determine whether to broadcast a message having the TXOP threshold to multiple STAs including the STA or unicast the message to the STA. An STA may receive a message from an AP having a TXOP threshold and may replace, based on an indication in the received message, a current TXOP threshold in the STA with the TXOP threshold in the received message. The STA may transmit an UL RTS frame in response to a determination that a planned TXOP duration satisfies the TXOP threshold.
Abstract:
Techniques for reducing delay in scheduling traffic transmission in an overlapping basic service set (OBSS) environment by modifying backoff mechanisms are disclosed. In some examples, a device (e.g., station (STA) or access point (AP)) may decode at least a portion of a preamble of a received packet to determine whether the packet is sent by a member of an OBSS (e.g., STA or AP from a different BSS). Backoff operations are typically deferred as a result of the decoding. Aspects of the present disclosure provide a method, apparatus, and system to reduce delay in scheduling traffic transmissions by resuming the backoff operations prior to expiration of the period reserved for an OBSS packet by the network allocation vector (NAV). In other words, the device may not honor the NAV of the OBSS packet, and instead perform spatial reuse by transmitting another packet (or signal) on the same frequency channel during the NAV of the OBSS packet.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus is a first wireless device that may be configured to receive a data confirmation message from a second wireless device. The data confirmation message may indicate whether the second wireless device successfully received data transmitted to the second wireless device. The first wireless device may be configured to determine whether the second wireless device is associated with the first BSS or a second BSS different from the first BSS based on the received data confirmation message and on a MAC header of the received data confirmation message. The first wireless device may be configured to transmit in a time period to a third wireless device based on the determination of whether the second wireless device is associated with the first BSS or with the second BSS different from the first BSS.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for using a shortened block acknowledgement (BlockAck) frame capable of acknowledging fragments. Such a shortened BlockAck frame may include a bitmap field having a shorter length than that of a basic BlockAck frame in the IEEE 802.11 standard (i.e.,
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a number of data symbols for transmitting a data payload. The apparatus is configured to determine a number of payload bits for transmitting the data payload based on the determined number of data symbols. The apparatus is configured to transmit a data frame. The data frame includes a signal field and data symbols encoded based on the data payload, the determined number of data symbols, and the determined number of payload bits, in which the data symbols are encoded using LDPC encoding or BCC encoding.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, an asset tracking device receives a set of group scheduling parameters for a plurality of asset tracking devices assigned to a plurality of assets in a shipment, wherein the set of group scheduling parameters comprises a global wakeup start time and a time interval between consecutive wakeup times, wherein the shipment comprises a plurality of stops, including a starting stop, one or more intermediate stops, and an ending stop, and wherein each of the plurality of asset tracking devices has a target stop of the plurality of stops, and, at each wakeup time of at least a set of wakeup times of the consecutive wakeup times: obtains one or more positioning measurements, transmits the one or more positioning measurements, synchronizes a local clock of the asset tracking device to a global time protocol, and transitions to a sleep mode.