Abstract:
Methods, systems, and devices are described for communicating telematics data and metadata. A first device transmits a first signaling message to a second device over a communication session signaling protocol. The first signaling message includes at least a first set of session information related to a communication session between the first device and the second device and a first set of telematics data for the first device. The first device receives a second signaling message from the second device over the communication session signaling protocol. The second signaling message includes metadata based on a content of the first set of telematics data transmitted in the first signaling message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
Methods, systems, and devices are described for wireless communication. A wireless device such as an in-vehicle system (IVS) may transmit an emergency call (eCall) message to a third party eCall server using a communication session which may be packet based or circuit based. The eCall message may include session information and telematics data. The third party eCall server may relay the session information and telematics data to a public safety answering point (PSAP). For example, the third party eCall server may generate an automatic text-to-speech message that is transmitted to the PSAP over a public communications network. In some cases, the third party eCall server may transmit a response to the wireless device including metadata based on the telematics data transmitted in the eCall message. The eCall message may also include a call-back number, and the PSAP may contact the wireless device directly using the call-back number.
Abstract:
Methods, systems, and devices are described for wireless communication. A wireless device such as an in-vehicle system (IVS) may transmit an emergency call (eCall) message to a third party eCall server using a communication session which may be packet based or circuit based. The eCall message may include session information and telematics data. The third party eCall server may relay the session information and telematics data to a public safety answering point (PSAP). For example, the third party eCall server may generate an automatic text-to-speech message that is transmitted to the PSAP over a public communications network. In some cases, the third party eCall server may transmit a response to the wireless device including metadata based on the telematics data transmitted in the eCall message. The eCall message may also include a call-back number, and the PSAP may contact the wireless device directly using the call-back number.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
Methods, systems, apparatuses, and computer-readable mediums are described for techniques for supporting telematics-enhanced emergency calls from mobile phones. In some aspects, a method for wireless communication may include establishing, by a user equipment (UE), a personal telematics-enhanced emergency call to a public safety answering point (PSAP), wherein the UE is capable of transmitting telematics data. The method may also include transmitting information that distinguishes the personal telematics-enhanced emergency call from other types of emergency calls.
Abstract:
Methods, systems, apparatuses, and computer-readable mediums are described for techniques for supporting telematics-enhanced emergency calls from mobile phones. In some aspects, a method for wireless communication may include establishing, by a user equipment (UE), a personal telematics-enhanced emergency call to a public safety answering point (PSAP), wherein the UE is capable of transmitting telematics data. The method may also include transmitting information that distinguishes the personal telematics-enhanced emergency call from other types of emergency calls.
Abstract:
Methods, systems, and devices are described for communicating telematics data and metadata. A first device transmits a first signaling message to a second device over a communication session signaling protocol. The first signaling message includes at least a first set of session information related to a communication session between the first device and the second device and a first set of telematics data for the first device. The first device receives a second signaling message from the second device over the communication session signaling protocol. The second signaling message includes metadata based on a content of the first set of telematics data transmitted in the first signaling message.