Abstract:
Techniques for mobility-aware contention procedures on a shared communication medium are disclosed. A connection failure associated with mobility between a source access point and a target access point sharing a communication medium may be detected. Based on the detected connection failure, a backoff threshold associated with contention-based access to the communication medium may be adapted. Contention for access to the communication medium may then proceed in accordance with the adapted backoff threshold.
Abstract:
Techniques are described for handover decisions based on an absolute channel quality of a serving cell. For example, there is provided a method that involves generating a set of handover parameters based on a report of serving cell signal quality to avoid ping-ponging effects of an access terminal between a serving cell and another cell. A network entity receives a report regarding a serving cell signal quality from a reporting entity. A set of parameters is defined for a network event and sent to an access terminal, where the set of parameters is based at least in part on the received report. The set of parameters for the network event is sent to the access terminal.
Abstract:
The present disclosure presents a method and an apparatus for hybrid management of handovers in a self organizing network. For example, the disclosure presents a method for transmitting, via a transmitting component at the base station, handover signaling data from the base station to a network entity, wherein the base station is one of a plurality of base stations transmitting handover signaling data to the network entity, receiving, at the base station, feedback associated with one or more handover parameters of the base station, wherein the feedback is received from the network entity and includes an indication of an amount of handover signaling data generated by the base station or the plurality of base stations, and updating the one or more handover parameters based on the feedback received and local information available at the base station. As such, hybrid management of handover in a self organizing network may be achieved.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Applying the one or more filters may include applying an UL RSSI filter to the one or more femto nodes to determine whether presence of the device causes a rise in UL RSSI measured at the one or more femto nodes.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon over an operating frequency of the macrocell base station, and the macrocell base station, and/or one or more network components, can identify the femto node based on one or more parameters reported by the device from receiving the beacon. The beacon can be transmitted at varying powers to ensure active hand-in triggering, mitigate interference and/or can be powered on and off for such purposes. In addition, a macrocell base station can regulate compressed mode periods during which a device can measure the femto node based on receiving information regarding device proximity to the femto node, or a device can generate proximity indication messages base on measuring the beacon signals, etc.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus preserves a state of a user equipment (UE) in an anchor evolved node B (eNB), wherein the anchor eNB is one of a set of connected cells, the UE being in a connected mode. Each cell of the connected set has a corresponding coverage area. The apparatus then maintains the state of the UE in the anchor eNB when the UE moves from a coverage area of the anchor eNB to a coverage area of another one of the cells from the set of connected cells.
Abstract:
Methods and apparatus are provided for configuring mobility or paging parameters of a femto node. A method includes determining capabilities of one or more neighboring access points based in part on signals received from the one or more neighboring access points. The method includes comparing the capabilities to one or more capabilities of the femto node to determine a mobility or paging parameter adjustment. The method includes adjusting one or more mobility or paging parameters based on the mobility or paging parameter adjustment.
Abstract:
Systems and methodologies are described that facilitate multiplexing communications from multiple downstream access points to one or more mobility management entities (MME). In particular, a concentrator component is provided that can establish a single transport layer connection with an MME along with multiple application layer connections over the single transport layer connection for each of multiple downstream access points and/or related mobile devices. The downstream access points and/or mobile devices can provide identifiers, such as tracking identifiers, to the concentrator component, which can utilize the identifiers to track communications with the MME. In this regard, the MME can send paging messages, and the concentrator component can determine downstream access points related to the paging messages based on a stored association with a tracking identifier in the paging message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with classifying devices that communicate with a femto node for providing services thereto. In one example, a node is equipped to monitor and/or receive one or more parameters communicated by a device, assign a classification to the device related to a frequency of using the femto node based in part on the one or more parameters. In an aspect, the node is equipped to provide services to the device based on the classification. In another aspect, the node is equipped to provide the classification to one or more femto nodes, including the femto node, for providing services to the device.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Applying the one or more filters may include applying an UL RSSI filter to the one or more femto nodes to determine whether presence of the device causes a rise in UL RSSI measured at the one or more femto nodes.