Abstract:
Methods, systems, computer-readable media, and apparatuses for integration of an outdoor map and an indoor map associated with a venue using a mobile device are presented. The method may comprise presenting the outdoor map associated with an outdoor map application, wherein the outdoor map includes an area associated with the venue. Additionally, the method may comprise overlaying the indoor map on the area of the outdoor map associated with the venue, wherein the indoor map is associated with an indoor map application. Furthermore, the method may comprise receiving a first indication of a first event associated with the venue. Moreover, in response to receiving the first indication of the first event, the method may comprise allowing the indoor map application to control an aspect associated with the presentation of the outdoor map with the overlaid indoor map.
Abstract:
Methods, systems, computer-readable media, and apparatuses for detection of anomalies within indoor map information are presented. In some embodiments, the method includes receiving a digital map. The method may further include identifying one or more anomalies within the digital map using a software-based anomaly detection tool. The method may also include displaying one or more suggested corrections to a user based on the one or more identified anomalies. The method may additionally include correcting the one or more identified anomalies within the digital map.
Abstract:
Various methods, apparatuses and articles of manufacture are provided which may be implemented in various devices for use in characterizing a signaling environment in an area of location uncertainty within an indoor structure. In an example, a computing device may obtain at least a portion of a travel log indicative measurements gathered by a mobile device within an area of location uncertainty, and a position fix based, at least in part, on one or more signals received at the mobile device within an area of location certainty. The computing device may, for example, determine an estimated trajectory of the mobile device within at least a portion of the area of location uncertainty within an indoor structure, e.g., leading to the position fix, based, at least in part on at least a portion of the plurality of measurements and the position fix.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided for use in one or more electronic devices to perform and/or otherwise support certain positioning capabilities with regard to a mobile device. For example, certain positioning capabilities may make use of one or more portal transition parameters that may be based, at least in part, on a determined likelihood that a mobile device, if located in a first region of a specific environment and within a threshold area of a portal connecting the first region to a second region of the specific environment, may or may not make use of the portal to transition from the first region to the second region, e.g., through the portal.
Abstract:
Systems, apparatus and methods for determining a location of a mobile device are presented. Often a mobile device requests assistance data from a location server. If the mobile device expects a significant delayed response in receiving the assistance data, the mobile device may determine a seed location or rough location estimate from a server. The mobile device may also request a map to display and/or a data structure for its estimator. The mobile device may preload the estimator with the rough location estimate and/or the data structure. After preloading, the estimator determines a location of the mobile device. Also, the mobile device may show the map to a user via a display.
Abstract:
Disclosed are processes, systems and apparatuses for providing positioning data, such as assistance data, to a mobile device for use in performing positioning or navigation operations. In particular implementations, the positioning data is based, at least in part, on particular capabilities of the mobile device, for example a processing platform of the mobile device. In other implementations, positioning data provided to a mobile device may be tailored according to a cost function.
Abstract:
Techniques for providing a user with an augmented virtuality (AV) experience are described herein. An example of a method of providing an AV experience includes determining a location of a mobile device, determining a context based on the location, obtaining AV object information, displaying the AV object information in relation to the context, detecting an interaction with the context, modifying the AV object information based on the interaction, and displaying the modified AV object information. The context may include weighting information. The weighting information may be based on Received Signal Strength Indication (RSSI) or Round-Trip Time (RTT) data. The weighting information may be associated with a composition of a physical object in the context. A user gesture may be received, and the AV object information may be modified based on the received gesture information.
Abstract:
Methods, apparatus, and computer program products for determining a mobile device location. An example of a method for determining a mobile device location includes receiving signals from a transmitter, measuring signal characteristics of the received signals, and downloading data from a database corresponding to a defined region associated with the transmitters. The downloaded data includes a set of position points, a classification of each position point, and expected signal characteristics for each position point. The method further includes comparing the measured signal characteristics with the expected signal characteristics for each position point, assigning a weight to position points based on the compared signal characteristics, and determining the mobile device location by selecting one position point from the set as a position point solution corresponding to the mobile device location based on the assigned weight. The position point solution is constrained by the classification of each position point.
Abstract:
Methods and devices include a server and at least two web browsers operable on at least two different computing devices. A server processes requested code to return binary code as metadata to assist a computing device render a webpage. The server transmits the generated metadata to at least one computing device. The computing device renders a webpage using at least a portion of the provided metadata. The metadata may identify portions of JavaScript that can be processed in parallel. The metadata may identify a library portion that does not have to be loaded. The metadata may identify a portion of the webpage that may be rendered first before a second portion of the webpage. Returning metadata to the computing device can assist the computing device in parsing, analyzing or executing the request for the webpage.