摘要:
The present invention relates to a continuous method for treating a crude phenol stream comprising methylbenzofuran and hydroxyacetone by passing the crude phenol stream through at least two reactors connected in series the reactors containing an acidic ion exchange resin, whereby the temperature in successive reactors decreases in flow direction of the phenol stream so that the temperature in the first reactor in flow direction of the phenol stream is between 100° C. and 200° C. and the temperature in the last reactor in flow direction of the phenol stream is between 50° C. and 90° C. without a thermal separation step between any of two successive reactors and to the use of this method in a process for making phenol.
摘要:
The present invention relates to method for producing phenol which includes: a) oxidizing cumene to form an oxidation product containing cumene hydroperoxide; b) cleaving the oxidation product using an acidic catalyst to form a cleavage product containing phenol, acetone and impurities; c) neutralizing and washing the cleavage product with a basic aqueous medium to obtain a neutralized cleavage product; d) separating the neutralized cleavage product by at least one distillation step into at least a phenol containing fraction and an aqueous fraction comprising hydroxyacetone; e) treating the aqueous fraction with an oxidizing agent in presence of a base to obtain a basic aqueous medium reduced in hydroxyacetone; f) recycling at least a portion of the basic aqueous medium to the neutralizing and washing step c); and g) recovering phenol from the phenol containing fraction obtained in step d).
摘要:
The present invention relates to a continuous method for treating a crude phenol stream comprising methylbenzofuran and hydroxyacetone by passing the crude phenol stream through at least two reactors connected in series the reactors containing an acidic ion exchange resin, whereby the temperature in successive reactors decreases in flow direction of the phenol stream so that the temperature in the first reactor in flow direction of the phenol stream is between 100° C. and 200° C. and the temperature in the last reactor in flow direction of the phenol stream is between 50° C. and 90° C. without a thermal separation step between any of two successive reactors and to the use of this method in a process for making phenol.
摘要:
The present invention provides a continuous process for recovering acetone from a waste stream from an acetone purification stage. The waste stream contains mesityl oxide and optionally acetone. The process for recovering acetone includes separating the waste stream in a separating device at least in one stream containing mesityl oxide and optionally a further stream containing acetone, then concentrating mesityl oxide in the mesityl oxide containing stream, and finally recycling the concentrated mesityl oxide stream to the separating device and bringing it into contact with a basic or acidic aqueous medium or with an acidic catalyst in the presence of water whereby mesityl oxide is at least partially hydrolyzed to acetone.
摘要:
To improve energy efficiency of prior art processes while preserving the standards of quality and total yield of desired end products, a process for the preparation of phenolic compounds is proposed. The process of the invention comprises working-up of the cleavage product mixtures by distillation, which comprises resolving the cleavage product mixture into at least three fractions in a single distillation step by feeding the cleavage product mixture to the side of a distillation column, removing a first fraction comprising the ketone at the top of the distillation column, removing a second fraction comprising the phenolic compound at the bottom of the distillation column, and removing a third fraction comprising unreacted the alkylaryl compound and the hydroxy ketone, and water, as side stream, whereby the side stream take-off is situated above the feed of cleavage product mixture to the distillation column, characterized by removing heat from the distillation column, whereby the heat take-off is situated above the side stream take-off of the third fraction, and a process for separating phenol from cleavage product mixtures, wherein the cleavage product mixture prior feeding into the distillation column, is preheated to a temperature of above 70° C. at standard pressure, preferably to a temperature of above 100° C., more preferably to a temperature between 110° C. and 180° C., most preferred to a temperature of about 140° C. to 146° C., and an apparatus suitable therefore.
摘要:
To improve energy efficiency of prior art processes while preserving the standards of quality and total yield of desired end products, a process for the preparation of phenolic compounds is proposed. The process of the invention comprises working-up of the cleavage product mixtures by distillation, which comprises resolving the cleavage product mixture into at least three fractions in a single distillation step by feeding the cleavage product mixture to the side of a distillation column, removing a first fraction comprising the ketone at the top of the distillation column, removing a second fraction comprising the phenolic compound at the bottom of the distillation column, and removing a third fraction comprising unreacted the alkylaryl compound and the hydroxy ketone, and water, as side stream, whereby the side stream take-off is situated above the feed of cleavage product mixture to the distillation column, characterized by removing heat from the distillation column, whereby the heat take-off is situated above the side stream take-off of the third fraction, and a process for separating phenol from cleavage product mixtures, wherein the cleavage product mixture prior feeding into the distillation column, is preheated to a temperature of above 70° C. at standard pressure, preferably to a temperature of above 100° C., more preferably to a temperature between 110° C. and 180° C., most preferred to a temperature of about 140° C. to 146° C., and an apparatus suitable therefore.
摘要:
A process for reducing the salt content of fractions comprising high boilers obtained in the preparation of phenol from cumene, by extraction, is claimed. In the preparation of phenol from cumene, not only phenol and acetone but also by-products such as dimethyl phenyl carbinol or acetophenone are formed in the cleavage of cumene hydroperoxide. In the work-up of the cleavage product phase by distillation, these by-products are obtained as a fraction which boils only at high temperatures. These fractions further comprise alkali metal in the form of salts as a result of the neutralization by means of aqueous sodium hydroxide after the acid catalyzed cleavage. The presence of salt in this phase makes the work-up of this phase considerably more difficult. The salt is usually removed from the fraction by extraction of the fraction with water. However, considerable problems can occur if the aqueous phase cannot be cleanly separated from the organic phase. According to the invention, not only water but also an organic liquid is added to the fractions comprising high boilers for the purposes of extraction. This aids and accelerates the subsequent phase separation. The organic liquid to be added to the fractions comprising high boilers can be removed again from the treated fractions by simple distillation. Furthermore, the process of the invention lowers the phenol content of the fractions comprising high boilers and phenol is recovered. Fractions comprising high boilers which have been treated according to the invention can be used as starting material for the production of carbon black.
摘要:
An interspinous process spacer for implantation in an interspinous space between a superior spinous process and an inferior spinous process includes a balloon-like body, a first deployable protrusion and a second deployable protrusion. The body has a distal end, a proximal end and a longitudinal axis extending between the proximal and distal ends. The spacer is arrangeable in an unexpanded configuration and an expanded configuration. The first deployable protrusion is mounted proximate the proximal end and the second deployable protrusion is mounted proximate the distal end. The first and second deployable protrusions are oriented generally parallel to the longitudinal axis in the unexpanded configuration and generally perpendicular to the longitudinal axis in the expanded configuration.
摘要:
The present invention deals with the proteolytic enzyme thermolysin which tends to be unstable in aqueous solution. The invention provides methods and compositions to enhance the stability of dissolved thermolysin in aqueous solution. Thermolysin, crude thermolysin or a lyophilizate containing thermolysin and one or more salts, is contacted with an aqueous buffer with a low salt concentration and a first solution is formed. Subsequently, a further salt in solid form is added and dissociated, thereby forming a second solution comprising thermolysin in a stabilized form.
摘要:
The present invention relates to a process for preparing unsaturated aldehydes or unsaturated carboxylic acids by heterogeneous catalytic gas phase oxidation of unsaturated or saturated hydrocarbons, comprising the process steps of: i) providing a gas mixture comprising a saturated hydrocarbon and catalytically dehydrogenating the saturated hydrocarbon in the gas phase to obtain a gas mixture comprising an unsaturated hydrocarbon in a dehydrogenation reactor having a dehydrogenation catalyst material; or ii) providing a gas mixture comprising oxygen and an unsaturated hydrocarbon; iii) catalytically oxidizing the unsaturated hydrocarbon obtained in process step i) or provided in process step ii) in the gas phase to obtain a gas mixture comprising an unsaturated aldehyde in a first oxidation reactor having a first oxidation catalyst material; wherein at least one of the reactors selected from the dehydrogenation reactor, the first oxidation reactor and the second oxidation reactor comprises at least one foam body.