Abstract:
The invention relates to an arrangement for improving load response in a marine vessel, which vessel comprises a propulsion system (1) including an internal combustion engine (2), a generator (3), a main switchboard (4), and an electric propulsion unit (5). A power bank (6) is connected to the main switchboard (4), whereby the power bank (6) is arranged to store additional electric energy supplied by the generator (3) by way of the main switchboard (4). The additional energy stored in the power bank (6) is arranged to be used together with the electric energy supplied by the generator (3) in order to increase the load response to the electric propulsion unit (5) at a given time.
Abstract:
The invention relates to fuel system for gas driven piston engine in a marine vessel, which gas is stored in at least one fuel storage tank in the vessel as liquefied gas. The fuel feeding system comprises a separate fuel feed tank in which the gas is in liquid phase and at elevated pressure. The gas is also in liquid phase in the fuel storage tank, in which, however, prevails only the hydrostatic pressure caused by the liquid gas.
Abstract:
The invention relates to a method and system for operating a LNG fuelled marine vessel. The marine vessel (1) comprises a LNG storage tank (3) and a LNG fuelled power plant (71). LNG is stored in the LNG storage tank, and in connection with a bunkering operation the marine vessel is supplied with LNG by connecting a source of LNG to a bunkering line (14) of the marine vessel and subsequently supplying the marine vessel with LNG through the bunkering line. In order to achieve a faster bunkering operation the bunkering line (14) is cooled down prior to the bunkering operation.
Abstract:
A marine vessel operated with gaseous fuel having at least one gas powered engine, which vessel is provided with a fuel tank arrangement in which the fuel is stored in liquid phase, in which vessel the engine is positioned in an engine room which is provided with an engine room casing extending from the engine room to the exterior of the vessel. The fuel tank arrangement is arranged in vicinity of the engine room casing.
Abstract:
Arrangement for providing cooling energy to a cooling medium circuit of a marine vessel having a storage of liquefied gas, the arrangement having a gas feeding system being provided with gas evaporation/heating apparatus. The gas evaporation/heating apparatus is arranged in heat transfer connection with the cooling medium circuit of the vessel through an intermediate flow circuit.
Abstract:
The invention relates to fuel system for gas driven piston engine in a marine vessel, which gas is stored in at least one fuel storage tank in the vessel as liquefied gas. The fuel feeding system comprises a separate fuel feed tank in which the gas is in liquid phase and at elevated pressure. The gas is also in liquid phase in the fuel storage tank, in which, however, prevails only the hydrostatic pressure caused by the liquid gas.
Abstract:
A propulsion system for a marine vessel is provided with at least one skeg in its hull and with a first propulsion device provided at the stern area of the vessel for providing propulsion power. A second propulsion device is located in connection with the skeg and comprises a system for changing the direction of its thrust effect.
Abstract:
A marine vessel includes a hull and has at least one load carrying facility defined by at least one loading space with a given height, a given width and a given length, whereby the loading space is provided on a bulkhead deck, and a propulsion arrangement, which includes at least one steerable thruster unit connected by a shaft arrangement to a drive means. In order to provide better access to the bulkhead deck for loading and unloading the marine vessel, the steerable thruster unit is arranged below the bulkhead deck and the drive means is arranged above the loading space. The shaft arrangement comprises a substantially vertical shaft section extending from the drive means above the loading space through the given height of the loading space and to the steerable thruster unit below the bulkhead deck.
Abstract:
A marine vessel has at least two engines installed in separate respective engine compartments that are positioned substantially horizontally adjacent to each other and are separated from each other by a wall structure defining at least one opening provided with a floodgate arrangement. The floodgate arrangement includes a gate device that is movable between a closed position, in which the gate device blocks the opening, and an open position, in which the gate device frees the opening, and a buoyancy assisted movement actuation device for moving the gate device from its closed position to its open position under the influence of rising water level.
Abstract:
A marine vessel power generation system comprising a conventional machinery arrangement, such as an internal combustion engine (2) and a generator (3), a propulsion system, and a main switchboard (6). In order to provide an environmental friendly power generation system, when the marine vessel enters, leaves or is in port, said system is provided with an H2O operated power generation arrangement (8) for generating H2O from seawater in order to produce electrical energy.