Abstract:
A seamless convoluted hose assembly. The assembly includes: a tubular inner liner having an outer surface, an inner surface, and an inner liner wall therebetween which defines a passageway. The assembly further includes a helical coil or a plurality of annular loops which produce convolutions in the outer surface of the tubular liner when the tubular inner liner is forced through the helical coil or plurality of loops under heat and pressure.
Abstract:
A seamless convoluted hose assembly. The assembly includes: a tubular inner liner having an outer surface, an inner surface, and an inner liner wall therebetween which defines a passageway. The assembly further includes a helical coil or a plurality of annular loops which produce convolutions in the outer surface of the tubular liner when the tubular inner liner is forced through the helical coil or plurality of loops under heat and pressure.
Abstract:
A seamless convoluted hose assembly. The assembly includes: a tubular inner liner having an outer surface, an inner surface, and an inner liner wall therebetween which defines a passageway. The assembly further includes a helical coil or a plurality of annular loops which produce convolutions in the outer surface of the tubular liner when the tubular inner liner is forced through the helical coil or plurality of loops under heat and pressure.
Abstract:
A hose assembly resistant to internal high frequency high pressure fluid impulses including a tubular liner having an inner surface, an outer surface, and a wall therebetween defining a passageway, and at least one extrusion preventing layer operatively connected to said outer surface of said tubular liner. A method for making a hose assembly by extruding a flexible tubular liner, disposing an extrusion preventing layer by disposing an inner wrap of flattened fabric yarn with no interstices between adjacent windings onto an outer surface of the flexible tubular liner, and disposing an outer wrap helically counterwound about the inner wrap, securing the inner and outer wraps of the extrusion preventing layer to each other and to the tubular liner by applying a bond coating, and heating the assembly to dry, fuse, and cure the bond coating. A method of using the hose assembly.
Abstract:
A lightweight hose assembly (10) of the type adapted for conveying fuels and other corrosive fluids. The assembly (10) includes a tubular inner liner (12) comprising a polymeric fluorocarbon material resistant to chemical and heat degradation, and is characterized by including an outer liner (14) comprising an expanded polyamide material disposed about the inner liner (12). The assembly (10) further includes a conductive strip (30) formed along the inner liner (12) for dissipating electrical charges accumulating along the inner liner (12).
Abstract:
A method of making a hose assembly (10) includes the steps of disposing a reinforcing layer (14) having interstitial spaces extending therethrough about a tubular inner liner (12) and heating an outer surface (16) of the inner liner (12) to cause it to melt and disperse into the interstitial spaces of the reinforcing layer (14) and the fibers themselves to bond the first layer to the inner liner (12). A lightweight hose assembly (10) of the type adapted for conveying fuels and other corrosive fluids is also disclosed. The assembly (10) includes a tubular inner liner (12) including a melt extrudable polymeric fluorocarbon material having an external surface (16). A layer (14) having gaps extending therethrough is disposed about the inner liner (12). The inner liner (12) is dispersed into the layer (14) and bonds the layer (14) to the external surface (16) of the inner liner (12).
Abstract:
A hose assembly and a method for forming the hose assembly are disclosed. The hose assembly includes a core tube having an outer peripheral surface and is formed from a fluoropolymer. The hose assembly also includes a first reinforcing layer disposed about the core tube and defining a plurality of first apertures, and a second reinforcing layer disposed about the first reinforcing layer and having an exterior surface and defining a plurality of second apertures. The hose assembly further includes a polymeric binder, formed from a binder composition, on the outer peripheral surface of the core tube, in the first and second apertures, and about the exterior surface of the second reinforcing layer to bond the first and second reinforcing layers to the core tube.
Abstract:
A quick connect hose coupling assembly (10) for connecting a hose to an external device is disclosed. The assembly (10) includes a female coupling assembly (12) having an inner female tubular member (16). A housing member (14) is mounted thereon. The female member (16) includes a body portion (17) and a stem (20) adapted to be inserted into the inner channel (37) of a hose (38). The stem (20) includes an axial bore (21) adapted to convey a fluid therethrough. The stem (20) further includes a plurality of circumferential barbs (22). The stem (20) can also include an additional barb having a rotation resisting structure provided thereon to resist relative rotational movement between the stem (20) and a hose (38) into which the stem (20) is disposed. In a preferred embodiment of the invention, after the stem (20) is inserted into the end of the hose (38), a collar (40) of a plastic material is directly molded onto the portion of the hose (38) which is mounted over the stem (20), over a portion of the body (17) of the female member (18), and over a portion of the female housing member (14), thereby clamping the hose (38) to the stem (20), and affixing the collar (40) to the female member (18) and to the female housing member (14). Additionally, a novel detent clip (72) is inserted in apertures (64) provided in the housing member (14) to cooperate in engaging a circumferential flange provided on a male member (66), thereby retaining the male member (66) within the channel (18) of the female member (16).
Abstract:
A liquid sensing assembly (10) senses the level of liquid (18) in a container (12). The assembly (10) includes a reference sensing capacitor (16) for sensing the dielectric constant of the liquid and a level sensing capacitor (14) for sensing the level of the liquid with a dielectric factor. A housing (20) forms one plate of the capacitors (14, 16), and two separate coiled wires form the second plates of the capacitors (14, 16). The capacitors (14, 16) are located within the housing (20) and separated by a seal (46) to prevent liquid from passing therethrough. The reference capacitor (16) is located in the upper end (28) of the housing (20) and receives the liquid directly at an inlet (52) and fills to overflow at an outlet (56) into the container (12). The level capacitor (16) is in the lower section of the housing (20) to sense the level in the container (12).
Abstract:
A hose assembly resistant to internal high frequency high pressure fluid impulses including a tubular liner having an inner surface, an outer surface, and a wall therebetween defining a passageway, and at least one extrusion preventing layer operatively connected to said outer surface of said tubular liner. A method for making a hose assembly by extruding a flexible tubular liner, disposing an extrusion preventing layer by disposing an inner wrap of flattened fabric yarn with no interstices between adjacent windings onto an outer surface of the flexible tubular liner, and disposing an outer wrap helically counterwound about the inner wrap, securing the inner and outer wraps of the extrusion preventing layer to each other and to the tubular liner by applying a bond coating, and heating the assembly to dry, fuse, and cure the bond coating. A method of using the hose assembly.